سنة الدراسية: 2015- 2016 تحت اشراف الاستاذ: سواق حسين

السلسلة رقم -7-المغناطيسية والكهرومغناطيسية

ثانوية: بالو محمد السرير المستوى: 2 ع ت

التمرين الأول:

عند تقريب القطب الشمالي لمغناطيس بحيث يكون محوره في مستوي أفقي ومتعامد مع المركبة $\overline{B_h}$ في نقطة حيث توجد ابرة ممغنطة بامكانها الدوران في مستوي أفقى حول محور عمودي ثابت يمر من مركزها ، تنحرف هذه الأخيرة بحيث يكون اتجاهها زاوية $\alpha = 30^\circ$.

 ${f B}_h=2$. ${f 10}^{-5}$ ${f T}$. تعطى المغناطيسي الناشئ من طرف المغناطيس في هذه النقطة . تعطى ${f T}$

التمرين الثاني:

نعتبر مغناطيسين متماثيلين (1) و (2) موضوعين كما يوضحه الشكل.

 ${f B}_2 = {f B}_1 = 2.5 \; .10^3 {f T}$ شدته ${f M}$ شدته مجالا مغناطیسیا بالنقطة

. \mathbf{M} في النقطة $\mathbf{B}=\mathbf{B}_1+\mathbf{B}_2$ مثل الحقل المغناطيسي الناتج عن المغناطيس \mathbf{B}_1 بين المغناطيسي الناتج عن المغناطيس

 ${f B}$ احسب شدة الحقل المغناطيسي -2

المعناطيس (1) في مكانه وندير المغناطيس (2) بزاوية $oldsymbol{ heta}$ حول النقطة $oldsymbol{M}$ وفي المنحى المعاكس لدوران عقارب الساعة ,مع الاحتفاظ $oldsymbol{M}$

بنفس المسافة بينة وبين النقطة f M . ماقيمة الزاوية m heta لتكون شدة المجال المغناطيسي الكلي f B تساوي $f T^3$ 1. f A,33

التمرين الثالث:

نضع داخل وشيعة طويلة إبرة مغناطيسية بحيث يكون محور الوشيعة (XX') عموديا على حامل الإبرة في غياب التيار الكهربائي.

نمرر تيارا كهربائيا شدته I=20 عبر الوشيعة التي عدد لفاتها في وحدة الطول هو n=1000 هو نتيحرف الإبرة في اتجاه عكس عقارب الساعة

(لاحظ الشكل)

1- مثل شعاع الحقل المغناطيسي المتولد في الوشيعة .

-2 استنتج جهة التيار المار في الوشيعة . (مثل ذلك على الرسم)

. أحسب ${f B}_1$ شدة الحقل المتولد من طرف الوشيعة -3

4- استنتج شدة الحقل المغناطيسي الكلي الخاضعة له الإبرة المغناطيسية ثم مثله _ _ _

lpha أحسب زاوية الانحراف-5

 $B_h = 20~\mu T$: يعطى: - المركبة الأفقية لشدة الحقل المغناطيسي الأرضي

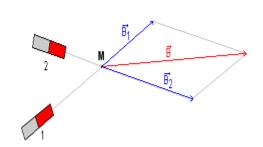
 $\mu_0 = 4\pi.10^{-7} \text{ T.m/A}$: ثابت نفاذیة الفراغ

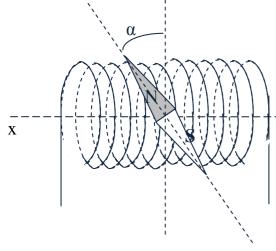
التمرين الرابع:

AB في تجربة السكتين الموضحة في الشكل المقابل , نغلق القاطعة (${f K}$) , فتلاحظ تحرك الناقل

1- عين جهة التيار الكهربائي المار في الناقل

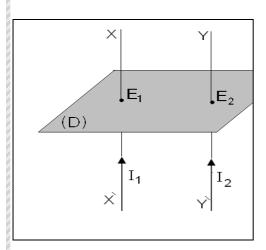
2- في أي جهة ينتقل القضيب وما سبب تحركه


3- حدد خصائصها ومثلها .


u=9 v وأن التوتر الذي يغذي الناقل $R=10\Omega$ هي AB الناقل AB

أ - بإستخدام قانون أوم أحسب شدة التيار الكهربائي المار في الناقل

ب - إستنتج شدة القوة الكهرومغناطيسية الناتجة


B = 0.4T, AB = 5cm : 22

التمرين الخامس:

 $I_1 = I_2 = 10 A$ يجتازهما تياران شدة كل منهما YY', XX' شاقوليان البعد بينهما وجد في الفراغ سلكان متوازيان البعد YY', XX'

I (mA)

 α (°)

2

72.3

57.5

3

78.0

4

80.9

5

82.7

86.3

لتكن النقطتان ${\bf E}_2$ ، ${\bf E}_1$ من نفس المستوى الأفقي (${\bf D}$) الذي يشمل السلكين .(الشكل) ${\bf E}_2$ ، ${\bf I}_2$ ، ${\bf I}_2$ ، ${\bf I}_3$ الهما نفس الجهة :

أوجد جهة و شدة الحقل المغناطيسي ${f B}$ المتولد في النقطة ${f N}$ من المستوي ${f D}$ في الحالتين :

. E_1 من 20 cm و على بعد $[E_1,E_2]$ من النقطة $[E_1,E_2]$ من النقطة $[E_1,E_2]$ من النقطة $[E_1,E_2]$

 \mathbf{E}_1 ب- النقطة \mathbf{N} تقع خارج القطعة $[\mathbf{E}_1,\mathbf{E}_2]$ و على بعد \mathbf{N} من

. ${f B}$ التي ينعدم عندها الحقل المتولد ${f R}_1$ من المستقيم ${f E}_1$ التي ينعدم عندها الحقل المتولد -2

3-نعتبر الآن أن التيارين السابقين متعاكسين في الجهة :

 $[E_1,E_2]$ منتصف القطعة الحقل B المتولد في النقطة N منتصف القطعة الحقل

التمرين السادس:

وشيعة مسطحة قطرها $d=4~\pi~cm$ وتحتوي على N=1000 لفة محورها عمودي على

مستوى الزوال المغناطيسي نضع في النقطة O مركز الو شيعة إبرة ممغنطة صغيرة

و عند إمرار تيار في الو شيعة نلاحظ أن الإبرة تنحرف بزاوية ٨. (لاحظ الشكل1)

نرمز ب ${\bf B_h}$ للمركبة الأفقية لشعاع الحقل المغناطيسي الأرضي و ب ${\bf B_h}$ لشعاع الحقل المغناطيسي الناتج عن مرور التيار في الو شيعة من اجل قيم مختلفة لشدة التيار ${\bf I}$ المار في الو شيعة نحسب كل مرة قيمة الزاوية α

. tan $\alpha = f(I)$:و نرسم المنحنى

 μ_0 و B_h ، d، N، I وجد العلاقة النظرية التي تربط a العربط التي تربط التي تربط التي تربط

. (دعم جوابك برسم توضيحي) $\mu_0 = 4\pi.10^{-7}\,SI$: حيث

 ${f B}_{f h}$ احسب ميل البيان ثم استنتج شدة للمركبة الأفقية لشعاع الحقل المغناطيسي الأرضي ${f B}_{f h}$ في مكان التجربة

التمرين السابع:

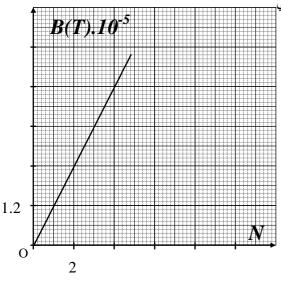
نريد تحديد نصف القطرالمتوسط لوشائع مسطحة $\,r\,$ تختلف في عدد لفاتها $\,N\,$. نصل في كل مرة إحدى

الوشائع في دارة كهربائية ليعبرها تيار شدته 2A و نقيس قيمة الحقل المغناطيسي $ec{B}$ الناشيء في

مركزها ثم نرسم البيان الجانبي .

1- ماذا تستنتج من البيان ؟

2- أوجد معادلة البيان .


. $ec{B}$ عطى لك أربعة عبارات لقيمة الحقل المغناطيسي -3

$$B = \mu_0 \frac{I}{2r}, B = \mu_0 \frac{N \cdot I}{2r}, B = \mu_0 \frac{r \cdot I}{2N}, B = \mu_0 \frac{N \cdot r}{2I}$$

- ماهي العبارة الصحيحة ؟

4- من الدراسة التجريبية والعبارة النظرية ، إستنتج قيمة نصف

 $\mu_0 = 4\pi 10^{-7} T$. m / A القطر r القطر r العطى الك قيمة نفاذية الفراغ

