1 - أنواع الوساطة:

- وساطة متجانسة: في هذه الوساطة يكون الوسيط والمتفاعلات من نفس الطور، مثلا كلها سوائل.

مثال: شوارد الحديد Fe^{2+} في كلور الحديد الثنائي مثلا تحفّز التفاعل بين محلول يود البوتاسيوم ومحلول بيروكسو ثنائي كبريتات البوتاسيوم.

- وساطة غير متجانسة: في هذه الوساطة لا يكون الوسيط من نفس طور المتفاعلات.

مثال: سلك من البلاتين داخل الماء الأكسجيني. نلاحظ صعود فقاعات غاز ثنائي الأكسجين بجوار السلك.

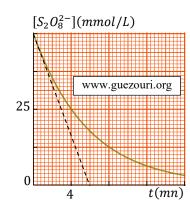
- وساطة إنزيمية: في هذه الوساطة يكون الوسيط إنزيما.

مثال: نضيف قطرات من الدم للماء الأكسجيني، فنلاحظ الفوران دلالة على الانطلاق الكثيف لغاز ثنائى الأكسجين.

$$2I^-=I_2+2\ e^-$$
 المعادلة النصفية للأكسدة: $S_2O_8^{2-}=2\ SO_4^{2-}+2\ e^-$ المعادلة النصفية للإرجاع: $S_2O_8^{2-}=I_2+2\ SO_4^{2-}$ معادلة الأكسدة - إرجاع: $S_2O_8^{2-}=I_2+2\ SO_4^{2-}$ التقدّم: (التجربة 1)

كمية المادة الابتدائية:

$$n_0(S_2O_8^{2-}) = [S_2O_8^{2-}]V_T = 50 \times 10^{-3} \times 0.2 = 0.01 \ mol \quad , \quad n_0(I^-) = [I^-]V_T = 150 \times 10^{-3} \times 0.2 = 0.03 \ mol$$

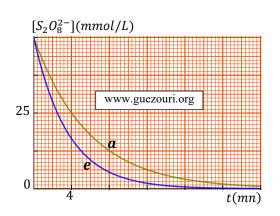

21-	$+ S_2 O_8^{2-} =$	$= I_2$	$+ 2 SO_4^{2-}$
0,03	0,01	0	0
0.03 - 2x	0.01 - x	x	2 <i>x</i>
$0.03 - 2x_m$	$0.01 - x_m$	x_m	$2x_m$

$$0.03-2x_m=0 \Rightarrow x_m=0.015\ mol=15\ mmol$$
 $0.01-x_m=0 \Rightarrow x_m=0.010\ mol=10\ mmol$ وبالتالي $x_m=10\ mmol$

3 - في التجربتين (1) و (2) لدينا العامل الحركي الذي يميز بينها هو التركيز الابتدائي.

في التجربتين (3) و (4) لدينا العامل الحركي الذي يميّز بينها هو وجود الوسيط في التجربة (4).

التفاعل في التجربة (2) أسرع تما في التجربة (1) ، وفي التجربتين (3) و (4) التفاعل أسرع تما في التجربتين (1) و (2) بسبب درجة الحرارة والتراكيز. وبالتالي:


$$v_v = rac{1}{V_T} imes rac{dx}{dt}$$
 السرعة الحجميّة للتفاعل: - **4**

لدينا من جدول التقدّم: $V_T = 0.01 - x$ ، وبالاشتقاق بالنسبة للزمن:

:(1) ومنه
$$V_T \frac{d[S_2 O_8^{2-}]}{dt} = -\frac{1}{V_T} \times \frac{dx}{dt} = -v_v$$
 ومنه $V_T \frac{d[S_2 O_8^{2-}]}{dt} = -\frac{dx}{dt}$

(2)
$$v_v = -\frac{d[S_2 O_8^{2-}]}{dt}$$

$$rac{d[s_2 o_8^{2^-}]}{dt} = -rac{50 imes 10^{-3}}{1.5 imes 4} = -8.3 imes 10^{-3} \ mol. L^{-1}.mn^{-1}$$
 هو $t=0$ ميل المماس عند $v_v = -(-8.3 imes 10^{-3}) = 8.3 imes 10^{-3} \ mol. L^{-1}.mn^{-1} : (2)$ وبالتعويض في العلاقة

5 - كمية الوسيط ثؤتر على مدّة التفاعل، أيْ أنّ من أجل كميّة من الوسيط قدرها $2 \, mL$ من الوسيط. وعلى هذا الأساس مثلنا البيان (e) .

.2

1 - معادلة التفاعل:

$$2I^- = I_2 + 2e^-$$
 المعادلة النصفية للأكسدة:

$$ClO^- + 2 \, H^+ + 2 \, e^- = Cl^- + H_2 O$$
 : المعادلة النصفية للإرجاع

$$2I^- + ClO^- + 2H^+ = I_2 + Cl^- + H_2O$$
 معادلة الأكسدة - إرجاع:

2 - جدول التقدّم:

كية المادّة الابتدائية:
$$CV = (ClO^-)$$
 موجود بزيادة المادّة الابتدائية:

3 - معادلة تفاعل المعايرة:

$$I_2+2\ e^-=2I^-$$
 الأرجاع: $S_2O_3^{2-}=S_4O_6^{2-}+2\ e^-$ الأكسدة: $I_2+2\ S_2O_3^{2-}=2I^-+S_4O_6^{2-}$

$$n(I_2)=rac{n(S_2O_3^{2-})}{2}=rac{1}{2}CV_E=0.5 imes0.2 imes0.04=4 imes10^{-3}\ mol$$
 يكون عند التكافؤ: $x_m=4 imes10^{-3}\ mol$ ، وبالتالي $n(I_2)=x$ ، وبالتالي

$$CV - x_m = 0$$
 المتفاعل المحد هو شاردة الهيبوكلوريت (ClO^-) ، لأنّ حسب المعطيات شوارد اليود موجودة بزيادة، وبالتالي 4

.
$$C = \frac{x_m}{V} = \frac{4 \times 10^{-3}}{25 \times 10^{-3}} = 0.16 \ mol/L$$
 ومنه

$$C_0 = 10C = 10 imes 0.16 = 1.6~mol/L$$
 ، فإنّ معامل التمديد هو $F = 10$ ، فإنّ

 S_0 ننشئ جدول التقدّم لتفاعل تحضير المحلول -5

Cl ₂ +	$Cl_2 + 2H0^- =$		+ Cl ⁻ -	$Cl^{-} + H_{2}O$	
$n_0(Cl_2)$	زيادة	0	0	بوفرة	
$n_0(Cl_2)-x$	//	x	x	//	
$n_0(Cl_2) - x_m$	//	x_m	x_m	//	

يتحلّل غاز ثنائي الكلوركليّا في محلول هيدروكسيد الصوديوم، وبالتالي
$$n_0({\it Cl}_2)-x_m=0$$
 ومنه $x_m=n_0({\it Cl}_2)$

$$(1)$$
 $n_0(Cl_2)=C_0V$ فإنّ ، $n(ClO^-)=C_0V$ ، وبما أن $n(ClO^-)=x_m$ ، فإنّ ، $n(ClO^-)=x_m$ ولدينا من جدول التقدّم

حسب تعريف الدرجة الكلورومترية، فإنّ V=1L ، أيّ أنّ جدول التقدّم الذي أنشأناه هو لتفاعل حدث في محلول حجمه V=1L .

$$V(Cl_2) = V_M C_0 V = 22.4 \times 1.6 \times 1 pprox 36~L$$
 لدينا من العلاقة (1): $V(Cl_2) = V_M C_0 V = 22.4 \times 1.6 \times 1 pprox 36~L$ لدينا من العلاقة (1): الدينا من العلاقة (1): $V(Cl_2) = V_M C_0 V = 22.4 \times 1.6 \times 1 pprox 36~L$

الدرجة الكلورومترية هي حجم غـاز ثنائي الكلور، أي 36°Chl

