

المنابة الرفية التحول كيمياني في وسط ماني

التمرين الأول

1- أ- عرف : الأكسدة ، الإرجاع ، المرجع ، المؤكسد ، الأكسدة الإرجاعية . ب- ما هي الثنائيات (مر/مؤ) المشاركة في كل معادلة من المعادلات التالية :

- a) $Cu^{2+} + Pb \rightarrow Cu + Pb^{2+}$
- b) $Au^{3+} + 3Ag \rightarrow Au + 3Ag^{+}$
- c) $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2\Gamma$
- d) $2H^+ + Mg \rightarrow H_2 + Mg^{2+}$
- e) $Cl_2 + Br^2 \rightarrow 2Cl^2 + Br_2$

جـ أكتب المعادلات النصفية للأكسدة الموافقة للثنائيات (مر/ مؤ) التالية:

 $(O_2/H_2O_2) \cdot (H_2O_2/H_2O) \cdot (S_4O_6^{2-}/S_2O_3^{2-}) \cdot (MnO_4^{-}/Mn^+) \cdot (Cr_2O_7^{2-}/Cr^{3+})$

 $\dot{V} = 200 \text{ mL}$ حجمه ($H_3O^+ + Cl^-$) حُرِي قطعة مِنْ الحُديد Fe عُرِي 2.8 في محلول حمض كُلور الماء ($C = 10^{-1} \text{ mol/L}$) حُرِي وَ تَر كِيزَ هِ $C = 10^{-1} \text{ mol/L}$

و الإرجاع ثم استنتج معادلة الأكسدة الإرجاعية . (Fe/Fe) ، (Fe/Fe) ، أكتب المعادلتين النصفيتين للأكسدة و الإرجاع ثم استنتج معادلة الأكسدة الإرجاعية .

ب- مثل جدول التقدم ، و استنتج منه مقدار التقدم الأعظمي Xmax وكذا المتفاعل المحد .

ج- أوجد في نهاية التفاعل:

- حجم الغاز المنطلق مقاس في الشرطين النظاميين.
 - تركيز المحلول الناتج بالشوارد +Fe2 .

د - أكتب الصيغة الجزيئية المجملة للملح الناتج ، و أحسب كتلته في حالة إذا ما بخرنا المحلول كليا . $M(Fe) = 56 \text{ g/mol} \cdot M(Cl) = 35.5 \text{ g/mol}$.

التمرين الثاني

النوع الكيميائي: 2- كلور 2- مثيل بروبان يتميه حسب المعادلة التالية:

 $(CH_3)_3C-C1 + 2 H_2O = (CH_3)_3C-OH + H_3O^+_{(aq)} + Cl^-_{(aq)}$

نتابع التطور الزمني لهذا التحول بطريقة قياس الناقلية . لذا ندخل في بيشر $V_1=20~\mathrm{mL}$ من محلول $V_1=20~\mathrm{mL}$ و مزيج يتكون من (ماء + acétone + 2 كلور 2- مثيل بروبان تركيزه المولي : $C_1=0.10~\mathrm{mol/L}$ و مزيج يتكون من (ماء + 2 $V_2=80~\mathrm{mL}$) حجمه $V_2=80~\mathrm{mL}$

t(s)	0	30	60	80	100	120	150	200
σ(S/m)	0	0,246	0,412	0,502	0,577	0,627	0,688	0,760

- 1- اشرح لماذا يمكن متابعة هذا التحول عن طريق قياس الناقلية .
 - 2- شكل جدول تقدم التفاعل.
- $\sigma = 426 \ {
 m x}$. للتفاعل هي σ بدلالة التقدم للتفاعل هي . $\sigma = 426 \ {
 m x}$
 - 4- شكل جدول يعطى قيمة التقدم x للتفاعل بدلالة الزمن.

- ر بين ذلك . t = 200 s عند اللحظة t = 200 s . بين ذلك .
 - x = f(t) أرسم البيان -6
- t = 50 s عند اللحظة x = f(t) . x = f(t) . x = f(t) .
 - قيمة زمن نصف التفاعل.

 $\lambda(Cl^-)$ ، $\lambda(H_3O^+)$ من دون الاستعانة α_f يمكن كتابة العلاقة بين α_f من دون الاستعانة (α_f مين أنه بمعرفة قيمة α_f . $\lambda(Cl^{-})$) 7.6 . 10^{-3} S.m².mol⁻¹ ، $\lambda(H_3O^+)$) 35.0 . 10^{-3} S.m².mol⁻¹ : يعطى

التمرين الثالث

نمزج $m C_1 = 0.8 \; mol/L$ من محلول يود البوتاسيوم ذو الصيغة ($m (K^+_{(aq)} + \Gamma_{(aq)})$ و التركيز $m V_1 = 100 mL$ مع من محلول بيروكسوديكبريتات البوتاسيوم نُو الصيّغة ($2K^{+}_{(aq)} + S_2O_8^{-2}_{(aq)})$ و التركيز $V_2 = 100 \mathrm{mL}$. نلاحظ تغير اللون ببطء فهو يدل على وسط تفاعلى نعتبره (A) . نلاحظ تغير اللون ببطء فهو يدل على تحول بطيء . $C_2 = 0.5 \; \mathrm{mol/L}$ التفاعل المنمذج لهذا التحول عبارة عن أكسدة إرجاعية تحدث بين شوارد اليود Γ و شوارد البيروكسوديكبريتات . $(S_2O_8^{2-}_{(aq)}/SO_4^{2-}_{(aq)})$ ، $(I_{2(aq)}/I_{(aq)})$ هما التفاعل هما التفاعل التفاعل و $(S_2O_8^{2-}_{(aq)})$

1- أكتب معادلة الأكسدة و معادلة الإرجاع ثم بين أن مُعادلة التفاعل الإجمالي تكون من الشَّكل :

$$2I_{(aq)}^{-} + S_2O_8^{2-}_{(aq)} = I_{2(aq)} + 2SO_4^{2-}_{(aq)} \dots (1)$$

- 2- لتعيين كمية ثنائي اليود I₂ المتشكل في اللحظة t في المحلول (A) نأخذ 10 عينات منه حجم الواحدة منه $(2Na^{+}_{(aq)} + S_2O_3^{-2})$ ثم نعاير في لحظات مختلفة هذه العينات بمحلول تيوكبريتات الصوديوم $V_0 = 20 \mathrm{mL}$. $C_3 = 0.4 \text{ mol.L}^{-1}$ ترکیزه
- قبل معايرة كل عينة نضيف في اللحظة المناسبة كمية من الماء البارد ، ثم نضع قطرات من صمغ النشأ حيث يصبح المحلول أزرقا ، و بعدها نضيف تدريجيا محلول ثيوكبريتات الصوديوم حتى بلوغ التكافؤ أين يزول اللون الأزرق دلالة على اختفاء ثنائي اليود كليا . سجلنا قيمة الحجم $m V_E$ المضاف عند التكافؤ بالنسبة لكل العينـات فتحصلنا على النتائج المدونة في الجدول التالي:

t(min)	0	3	6	9	12	16	20	30	40	50	60
$V_{E}(mL)$	0.0	2.5	5.1	6.9	8.4	10.2	11.4	14.1	15.6	16.1	16.4

أ- ما هو الغرض من إضافة المادة البارد قبل كل معايرة .

 $V_F = f(t)$ ب- أرسم البيان

جـ أنشئ جدول تقدم التفاعل للمعايرة علما أن التفاعل المنمذج للمعايرة هو كما يلي :

$$I_{2(aq)} + 2S_2O_3^{2-}(aq) = 2I_{(aq)} + S_4O_6^{2-}(aq) \dots (2)$$

- د- أثبت أن عدد مو لات ثنائي اليود المتشكل في اللحظة t في محلول اليود الابتدائي يعبر عنه بدلالة الحجم المضاف . $n(I_2) = 2 V_E$: بالعلاقة بالمنافؤ في نفس اللحظة t
- هـ انشئ جدول التقدم للتفاعل (1) . و اعتمادا عليه أوجد مقدار التقدم النهائي ، و كذلك علاقة التقدم x بدلالة الحجم المضاف عند التكافق
 - $t = 30 \, \text{min}$ عند اللحظة I_2 عند الحظة $t = 30 \, \text{min}$
 - 4- أوجد زمن نصف التفاعل.
 - . $t = 30 \; \mathrm{min}$ على البيان $V_{\mathrm{E}} = f(t)$ سرعة التفاعل عند اللحظة $V_{\mathrm{E}} = f(t)$

التمرين الرابـــع

في حصة للأعمال المخبرية ، أراد فوج من التلاميذ دراسة التحول الكيميائي الذي يحدث للجملة (مغنزيوم صلب ، محلول حمض كلور الماء) . فوضع أحد التلاميذ شريطا من المغنزيوم m = 36 mg كتلته m = 36 mg في دورق ، ثم أضاف إليه محلولا لحمض كلور الماء بزيادة ، حجمه m = 30 m ، و سد الدورق بعد أن أوصله بتجهيز يسمح بحجز الغاز المنطلق و قياس حجمه من لحظة لأخرى .

1- مثل مخططا للتجربة ، مع شرح الطريقة التي تسمح للتلاميذ بحجز الغاز المنطلق ، و قياس حجمه و الكشف عنه

2- أكتب معادلة التفاعل الكيميائي المنمذج للتحول الكيميائي التام الحادث في الدورق علما أن الثنائيتين المشاركتين هما : $(Mg^{2+}_{(aq)}/Mg_{(s)})$ ، $(H^+_{(aq)}/H_{2(g)})$.

3- يمثل الجدول الآتي نتائج القياسات التي حصل عليها الفوج:

t(min)	0	2	4	6	8	10	12	14	16	18
$V(H_2)$ (mL)	0	12.0	19.2	25.2	28.8	32.4	34.8	36.0	37.2	37.2
x(mol)										

أ- مثل جدو لا لتقدم التفاعل ، ثم استنتج قيم تقدم التفاعل X في الأزمنة المبينة في الجدول :

ب- املاً الجدول ثم مثل البيان x = f(t) بسلم مناسب

جـ عين سرعة التفاعل في اللحظة النهائية t = 0.

(بكالوريا 2009 - علوم تجريبية)

التمرين الخامس

بهدف تتبع تطور التحول الكيميائي التام لتأثير حمض كلور الماء (${
m H}^+ + {
m Cl}^-$) على كربونات الكالسيوم . نضع قطعة كتلتها ${
m g}$ 2.0 و من كربونات الكالسيوم ${
m CaCO_3}$ داخل ${
m Thom}$ من حمض كلور الماء تركيزه المولي ${
m C}_1 = 1.0 \cdot 10^{-1} \; {
m mol.L}^{-1}$.

الطريقة الأولى :

نقيس ضغط غاز ثنائي أكسيد الكربون المنطلق و المحجوز في دورق حجمه لتر واحد (1L) تحت درجة حرارة ثابتة $T = 25^{\circ}$ C ثابتة $T = 25^{\circ}$ C فكانت النتائج المدونة في الجدول التالي :

t(s)	20	60	100
$P_{(CO_1)}(Pa)$	2280	5560	7170
$\mathbf{n}_{(\mathrm{CO}_2)}(mol)$			
x(mol)			

المعادلة الكيميائية المعبرة عن التفاعل المنمذج للتحول الكيميائي السابق:

 $CaCO_{3(s)} + 2H^{+}_{(aq)} = CO_{2(g)} + Ca^{2+}_{(aq)} + H_2O_{(1)}$

1- أنشئ جدو لا لتقدم التفاعل السابق.

2- ما العلاقة بين (n(CO₂)) كمية مادة الغاز المنطلق و (x) تقدم التفاعل ؟

3- بتطبيق قانون الغاز المثالي و الذي يعطى بالشكل (PV = n R T) ، أكمل الجدول السابق .

. 1L = $10^{-3} \, \mathrm{m}^3$ ، $\hat{R} = 8.31 \, \mathrm{SI}$. $\hat{x} = f(t)$ مثل بيان الدالة . x = f(t)

الطريقة الثانية:

 $\overline{\text{II- irry }}$ قيمة $\overline{\text{rc}}$ كيز شوارد الهيدروجين $\overline{\text{H}}$) في وسط التفاعل بدلالة الزمن أعطت النتائج المدونة في الجدول التالى :

t(s)	20	60	100
$[H^+](mol L^{-1})$	0,080	0,056	0,040
$\mathbf{n}_{(\mathbf{H}^*)}(mol)$			
x(mol)			

 $(n(H^+))$ كمية مادة شوار د الهيدر وجين في كل لحظة .

2- مستعيناً بجدول تقدم التفاعل ، أوجد العبارة الحرفية التي تعطى (n(H+)) بدلالة التقدم (x) وكمية المادة الابتدائية (n₀) لشوار د الهيدر وجين الموجبة.

3- أحسب قيمة التقدم (x) في كل لحظة.

بانشئ البيان x = f(t) ماذا تستنتج x = f(t)

5- حدد المتفاعل المحد .

6- استنتج t_{1/2} زمن نصف التفاعل.

7- أحسب السرعة الحجمية للتفاعل في اللحظة £ 50 t = 50 .

M(O)) 16 g/mol · M(C) = 12 g/mol · M(Ca)) 40 g/mol

(بكالوريا 2009 – رياضيات <u>)</u>

التمرين السادس

يحفظ الماء الأكسجيني (محلول لبروكسيد الهيدروجين _(aq) H₂O_{2 (aq)} في قارورات خاصة بسبب التفكك الذاتي البطيء . تحمل الورقة الملصقة على قارورته في المختبر الكتابة ماء أكسجيني (10V) ، و تعني (1L) من الماء الأكسيجيني $V_{M} = 22.4 \text{ L.mol}^{-1}$ ينتج بعد تفككه 10L من غاز ثنائي الأكسجين في الشروطين النظاميين حيث الحجم المولى 1- ينمذج التقكك الذاتي للماء الأكسجيني بالتفاعل ذي المعادلة الكيميائية التالية:

 $2H_2O_{2(aq)}=2H_2O_{(1)}+O_{2(aq)}$. $C=0.893~mol.L^{-1}$. هو الأكسجيني والمولى المولى المجمى الماء الأكسجيني والمحاون المولى المحاون ال

ب- نضع في حوجلة حجما Vi من الماء الأكسجيني و نكمل الحجم بالماء المقطر إلى Tuo mL .

• كيف تسمى هذه العملية ؟

• استنتج الحجم V_i علما أن المحلول الناتج تركيزه المولى V_i علما أن المحلول الناتج تركيزه المولى

2- لغرض التأكد من الكتابة السابقة (10V) عايرنا mL عايرنا 20 mL من المحلول الممدد بواسطة محلول برمنغنات البوتاسيوم ($(K^+_{(aq)} + MnO_4_{(aq)})$ المحمض ، تركيزه المولي $C_2 = 0.02 \text{ mol.L}^{-1}$ فكان الحجم المضاف عند $V_{\rm F} = 38 \, {\rm mL}$ التكافؤ

أ- أكتب معادلة التفاعل أكسدة- إرجاع المنمذج لتحول المعايرة علما أن الثنائيتين الداخلتين في هذا التفاعل هما:

 $(MnO_{4(aq)}/Mn^{2+}_{(aq)}) \cdot (O_{2(aq)}/H_2O_{2(aq)})$

ب- استنتج التركيز المولى الحجمي لمحلول الماء الأكسجيني الابتدائي ، و هل تتوافق هذه النتيجة التجريبية مع ما كتب على ملصوقة القارورة؟

قبل البدء في المراجعة

اللهم إنى أسألك فهم النبئين و حفظ المرسلين والملائكة المقريين، اللهم أجعل ألسنتنا عامرة بذكرك و قلوبنا بخشيتك و أسرارنا بطاعتك إنك على كل شيء قدير، حسبنا الله و نعم الوكيل

