
BAC 2013 WALLING WAR AND THE STATE OF THE

بكالرباب المعب

رياخي « تنين * تنيني رياخي الخال * تنيني رياخي

2012-2008

التمرين رقم: 1 بكالوريا 2008 علوم تجريبية (4.5 نقط)

1 - حل في مجموعة الأعداد المركبة C المعادلة:

 $z^2 - (1+2i)z - 1 + i = 0$

 $|z_1| < |z_2|$: حيث z_1 و z_1

. عدد حقیقی عدد حقیقی این أن $\left(\frac{z_1}{z_2}\right)^{2008}$

المستوي منسوب إلى معلم متعامد و متجانس $(O; \overline{u}, \overline{v})$ التكن B ، B و C نقط المستوي التي لاحقاتها - 2 . z_2 ، z_1 ، الترتيب

 $Z = \frac{z_2 - 1}{z_1 - 1}$: ليكن لا العدد المركب حيث

 $e^{i(\theta_1+\theta_2)}=e^{i\theta_1} imes e^{i\theta_2}$: و من الخاصية $e^{i\theta}=\cos\theta+i\sin\theta$ انطلاقا من التعريف

بر هن ان : θ_2 و آن $e^{i\theta_1}=e^{i(\theta_1-\theta_2)}$ حیث θ و θ أعداد حقیقیة .

ب) أكتب Z على الشكل الأسي . - جس المتلف المثلثي و استنتج أن النقطة C هي صورة النقطة Bبتشابه مباشر مركزه A، يطلب تعيين زاويته و نسبته.

التمرين رقم: 2 بكالوريا 2008 علوم تجريبية

ألم عن مجموعة الأعداد المركبة \(\) المعادلة ذات المجهول z التالية:

 $z^2 + iz - 2 - 6i = 0$

د. نعتبر في المستوي المركب المنسوب إلى معلم متعامد و متجانس $(O; \vec{u}, \vec{v})$ النقطتين ، A و B اللتين .2

المحقتاهما z_R و z_R على الترتيب حيث المحقتاهما

 $z_B = -2 - 2i \qquad g \qquad z_A = 2 + i$

-[AB] عين z_{ω} لاحقة النقطة ω مركز الدائرة

 $z_c = \frac{4-i}{1+i}$ حيث z_c النقطة ذات اللاحقة عيد z_c

. (Γ) كتب على الشكل الجبري ثم أثبت أن النقطة C تتتمي إلى الدائرة الكتب على الشكل الجبري ثم أثبت أن النقطة

برهن أن عبارة التشابه المباشر S الذي مركزه $M_{_0}(z_{_0})$ و نسبته k>0 و راويته heta و الذي أ.4 z'- $z_0=ke^{i\theta}\left(z-z_0
ight)$: هي M'(z') النقطة $M\left(z
ight)$ النقطة

. $z' + \frac{1}{2}i = 2e^{i\frac{\pi}{3}} \left(z + \frac{1}{2}i\right)$: ين الطبيعة و العناصر المميزة للتحويل S المعرف بـ عين الطبيعة و العناصر المميزة للتحويل

لتمرين رقم: 3 بكالوريا 2008 رياضيات شعبة رياضيات (5 نقاط<u>)</u>

المستوي منسوب إلى معلم متعامد و متجانس $(O; \vec{u}, \vec{v})$. نعتبر النقطتين A و B اللتين

 $\sqrt{3} + 3i$ و $\sqrt{3} + 3i$ على الترتيب.

- B إلى A الذي مركزه O و يحول A إلى A الذي مركزه A و يحول A إلى Aثمّ عيّن زاويته ونسبته.
- 2. نعرف متتالية النقط من المستوي المركب كما يأتى: $A_0 = A$ ومن أجل كل عدد A_n بالرمز الى لاحقة A_n بالرمز $A_{n+1} = S(A_n)$ ، مرمز الى الحقة الم
 - A_2 انشئ في المستوي المركب النقط A_0 و A_1 و A_2

$$z_n = 2\left(\sqrt{3}\right)^n e^{i\left(\frac{n\pi}{2} - \frac{\pi}{6}\right)}$$
 برهن ان:

-) عين مجموعة الأعداد الطبيعية n التي تنتمي من أجلها النقطة A_n إلى المستقيم OA_1

- $u_n = A_n A_{n+1}$ و $u_n = A_n A_{n+1}$ عدد طبيعي $u_n = A_0 A_1$ من أجل كل عدد طبيعي $u_n = A_n A_{n+1}$
 - ، q الأول u_0 وأساسها u_0 عندسية يطلب تحديد حدّها الأول u_0 وأساسها
 - u_n باستنج عيارة u_n يدلالة
- . $\lim_{n \to \infty} S_n$ احسب، بد لاله S_n المجموع S_n حيث: S_n حيث: S_n حيث، المجموع S_n احسب، بد لاله المجموع عبد المجموع المجم

التمرين رقم: 4 بكالوريا 2008 رياضيات (5 نقاط)

نعتبر في مجموعة الأعداد المركبة $\mathbb C$ كثير الحدود P(z) المعرف كما يلى :

$$P(z) = 2z^4 - 2iz^3 - z^2 - 2iz + 2$$

- بين أنه إذا كان lpha جذر الكثير الحدود P(z) فإن $rac{1}{z}$ جذر له أيضا. 1
 - $\cdot P(z)$ تحقق أن i+i جذر الكثير الحدود
 - . P(z) = 0 المعادلة \mathbb{C} على في
 - 4) اكتب الحلول على الشكل الأسى.
- 5) لتكن A و C و D النقط من المستوي المركب المنسوب إلى معلم متعامد مقجانس $\frac{m}{2} - \frac{m}{2}i$ و التي لاحقاتها على الترتيب: i+i و i+i و التي لاحقاتها على الترتيب: حيث m عدد حقيقي. عين m حتى يكون الرباعي ABCD مربعا.

التمرين رقم: 5 بكالوريا 2008 تقنى رياضى (4 نقاط)

لتكن في مجموعة الأعداد المركبة C المعادلة (*) المعرفة كما يلى:

$$Z^3 + (2-4i)Z^2 - (6+9i)Z + 9(-1+i) = 0$$
 ... (*)

(*) هو حل المعادلة $Z_0 = 3i$ بين أن $Z_0 = 3i$

 $|Z_1| < |Z_2|$ على الشكل الأمني حيث $|Z_1| < |Z_2|$ ثم أكتب طولها $|Z_2| < |Z_3|$ على الشكل الأمني حيث $|Z_1| < |Z_2|$.

ك/ لتكن B : A مسور الحلول $Z_2 : Z_1 : Z_2 : Z_1$ على الترنيب في مستو منسوب إلى معلم متعامد C : B : A

 $\{(A,1);(B,1);(C,-1)\}$ مين النبطة G مرجع الجملة $\{(C,u,v)\}$

 $AM^2 + BM^2 - CM^2 = -13$: $\Delta M = M^2 + BM^2 - CM^2 = -13$

(E) بيّن أنّ النقطة A تنتمى إلى المجموعة

(E) تحقق أنّ النقط (E) (E) في استقامية ثمّ عين صورة المجموعة (E) بالتحاكي الذي مركزه (E)النقطة O ويحول B إلى G محددا عناصره المميزة.

التمرين رقم: 6 بكالوريا 2008 تقني رياضي (4 نقاط)

r عدد حقیقی موجب نماما و θ عدد حقیقی کیفی۔

1) حل في مجموعة الأعداد المركبة C المعادلة ذات المجهول z:

$$z^2 - 2i \left(r \cos \frac{\theta}{2}\right)z - r^2 = 0$$

اكتب الحلين على الشكل الأسي.

2) في المستوي المركب المنسوب ألى المعلم المتعامد والمتجانس $(O; \hat{u}, \hat{v})$ نعتبر النقطتين A و B صورتى الحلين.

عين θ حتى يكون المثلث OAB متقايس الأضلاع- التمرين رقم: 7 بكالوريا 2009 علوم تجريبية (5 نقاط)

و
$$Z$$
 عدد مرکب $P(Z) = (Z-1-i)(Z^2-2Z+4)$ و $P(Z)$

P(Z)=0 المعائلة \mathbb{C} المعائلة المجموعة

$$Z_2 = 1 - \sqrt{3}i + Z_1 = 1 + i$$
 (2)

أ) أكتب Z_1 و Z_2 على الشكل الأسى.

ب) أكتب $\frac{Z_1}{Z_2}$ على الشكل الجبري ثم الشكل الأسي.

 $\sin\left(\frac{7\pi}{12}\right)$ $\cos\left(\frac{7\pi}{12}\right)$ or $\cos\left(\frac{7\pi}{12}\right)$

ه عدد طبیعی.عیّن قیم n بحیث یکون العدد $\left(\frac{Z_1}{Z_2}\right)^n$ حقیقیا.

 $\cdot \left(\frac{Z_1}{Z_2}\right)^{456}$ ب) احسب قيمة العدد

التمرين رقم: 8 بكالوريا 2009علوم تجريبية (\hat{i} نقاط) المستوي منسوب إلى معلم متعامد و متجانس (\hat{i} ; \hat{i})

 $z^2 - 2z + 4 = 0$ المعادلة: C المعادلة: الأعداد المركبة المعادلة: المعادلة:

2. نسمى Z2 ؛ Z1 حلى هذه المعادلة.

أ) أكتب العددين 21 و 22 على الشكل الأسى.

ب) C ، B، A هي النقط من المستوي التي لواحقها على الترتيب:

$$z_{c} = \frac{1}{2} (5 + i\sqrt{3})$$
 $z_{B} = 1 + i\sqrt{3}$ $z_{A} = 1 - i\sqrt{3}$

($i^2 = -1$ لذي يحقق العدد المركب الذي يحقق ($i^2 = -1$

أحسب الأطوال BC ، AC ، AB ثم استنج طبيعة المثلث ABC .

 $Z = \frac{Z_c - Z_s}{Z_s}$: حيث : عمدة للعدد المركب Z حيث : عمدة للعدد المركب

د) أحسب Z^3 و Z^6 ثم استنج أن Z^{3k} عدد حقيقي من أجل كل عدد طبيعي Z^3

التمرين رقم: 9 بكالوريا 2009 رياضيات (4 نقاط)

 $f(z) = \frac{z-i}{z-1}$ خيث: f(z) حيث: العدد المرقب عن 1 العدد المرقب عن عدد مرقب عن العدد المرقب عن العدد العدد

(45+45i)f(z) = 23+45i-2z المعادلة: \mathbb{C} المعادلة: (45+45i)f(z) = 23+45i-2z

 $(O;\vec{u},\vec{v})$ لتكن M صورة العدد المركب z في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(C;\vec{u},\vec{v})$ أ- عين مجموعة النّقط M بحيث يكون f(z) عندا حقيقيا سالبا تماما.

. $arg\left(f\left(z_{0}\right)\right)=\frac{3\pi}{2}$ و $\left|f\left(z_{0}\right)\right|=1$ ب- احسب العدد المركب z_{0} بحيث: 1

3) في المستوي المركب نعتبر النقط $B \cdot A$ و C صور الأعداد المركبة $i \cdot i \cdot i$ و C على الترتيب. أ- ما نوع المثلث ABC؟

. ACBD ب- عين النّقطة D نظيرة C بالنسبة إلى المستقيم (AB) و استنتج طبيعة الرّباعي

التمرين رقم: 10 بكالوريا 2009 تقنى رياضي (4 نقاط)

(1) أ) حل في
$$\mathbb{C}$$
 المعادلة $z^2 - 2z + 2 = 0$ المجهول.

$$(\overline{z}+3)^2-2(\overline{z}+3)+2=0$$
 : $z=0$ استنتج في $z=0$ حلول المعادلة ذات المجهول $z=0$ عدث $z=0$ حدث $z=0$ مر افق $z=0$

 $\left(O,\overrightarrow{u},\overrightarrow{v}
ight)$ المستوي المركب منسوب إلى المعلم المتعامد المتجانس (2

النقط A، B، A الواحقها M الواحقها (1-i)، (1-i) على الترتيب.

 \mathbb{R}^+ اً عين $z=1-i+ke^{irac{2M}{4}}$ محموعة النقط M من المستوي حيث: $z=1-i+ke^{irac{2M}{4}}$ عندما

|z-1+i|=|z-1-i| عين (E) مجموعة النقط M من المستوي حيث:

التمرين رقم: 11 بكالوريا 2009 تقنى رياضى (4 نقاط)

 $z^2 - 6z + 18 = 0$ (1) lhaskif C lhacket lhacket lhaskif C lhacket lhacket lhacket lhaskif C lhacket l

 $z_1 = 3 - 3i$ حيث z_1 المركب العدد المركب

(i هو العدد المركب الذي طويلته 1 و $\frac{\pi}{2}$ عمدة له)

أ) اكتب ء على الشكل الأسي.

 $z_1 \times z_3 = 6(\cos{\frac{\pi}{12}} + i\sin{\frac{\pi}{12}})$ باحسب طويلة العدد z_3 وعمدة له حيث (ب

 $\sin \frac{\pi}{12}$ و $\cos \frac{\pi}{12}$ استنتج قيمتي

C ، B ، A النقط C ، B ، C ، B ، C ، C .

الترتيب $\frac{\sqrt{2}}{2} + i \frac{\sqrt{6}}{2}$ على الترتيب

 G_{α} مرجحا نرمز له بالرمز $\{(A;1),(B;-1),(C;\alpha)\}$ مين قيم العدد الحقيقي α حتى تقبل الجملة المثقلة

ب) عين مجموعة النقط G_{α} لمّا يتغيّر lpha في

التمرين رقم: 12 بكالوريا 2010 علوم تجريبية (5 نقاط)

نعتبر في المستوي المنسوب إلى المعلم المتعامد المتحانس (O; u, v) النقطتين A و B اللتين $z_{B} = 3i$ و $z_{A} = 1 + i$ لاحقتيهما على الترتيب

1) اكتب على الشكل الأسي: يرع و يرع .

2) ليكن S التشابه المباشر الذي يرفق بكل نقطة M لاحقتها z النقطة M ذات اللاحقة z حيث:

$$z' = 2iz + 6 + 3i$$

أ) عين العناصر المميزة للتشابه المباشر S.

ب) عين z لاحقة النقطة C صورة النقطة A بالتشابه المباشر C

ج) استتج طبيعة المثلث ABC.

 $\{(A;2),(B;-2),(C;2)\}$ مرجح الجملة D مرجع الجملة (3

أ) عين z لاحقة النقطة D.

ب) عين مع التبرير طبيعة الرباعي ABCD.

لتكن M نقطة من المستوي تختلف عن Bوعن D لاحقتها z وانتكن Δ مجموعة النقط M ذات Δ

اللاحقة z الذي يكون من أجلها $\frac{z_B - z}{z_{-z}}$ عددا حقيقيا موجبا تماما.

. (Δ) لنقطة E تنتمى إلى (Δ).

ب) أعط تفسير ا هندسيا لعمدة العدد المركب $\frac{Z_B-Z}{L}$. عين حينئذ المجموعة (Δ).

التمرين رقم:14 بكالوريا 2010 علوم تجريبية (4 نقاط)

- 1) حل في مجموعة الأعداد المركبة $\mathbb C$ المعادلة $z^2-6z+18=0$ ، ثمّ اكتب الحلين على الشكل الأستى.
 - D و $C \cdot B \cdot A$ المستوي المنسوب إلى المعلم المتعامد والمتجانس $(O; \overline{u}, \overline{v})$ ، نعتبر النقط (2)

 $z_D=-z_B$ و $z_C=-z_A$ ، $z_B=\overline{z_A}$ ، $z_A=3+3i$ و لاحقاتها على النرتيب:

أ - بيّن أنّ النقط C ، B ، A و D تنتمي إلى نفس الدائرة ذات المركز O مبدأ المعلم.

- B الذي مركزه O ويحوّل النقطة A إلى النقطة A الذي مركزه O
 - $D \circ O \circ B$ و $D \circ O \circ B$ و $D \circ O \circ B$ و $D \circ O \circ B$
 - د استنتج طبيعة الرباعي ABCD .

التمرين رقم: 15 بكالوريا 2010 رياضيات (4.5 نقطة)

 $Z^3-3Z^2+3Z-9=0$... (E) المعادلة: \mathbb{C} المعادلة: المركبة

- Z عين الأعداد الحقيقية a و b و b و عين الأعداد الأعداد الحقيقية a و أجل كل عدد مركب (E) أي تحقق أن a $Z^3 - 3Z^2 + 3Z - 9 = (Z - 3)(aZ^2 + bZ + c)$: فإن
 - \cdot (E) المعادلة \mathbb{C}
 - . $(O; \vec{u}, \vec{v})$ المستوي منسوب إلى المعلم المتعامد المتجانس

. $Z_C = -i\sqrt{3}$ و $Z_B = i\sqrt{3}$ و $Z_A = 3$ النقط A و A و C و B و A

بيّن أنّ المثلث ABC متقايس الأضلاع.

- $\frac{\pi}{3}$ و $Z_D=2e^{irac{5\pi}{6}}$ و $Z_D=2e^{irac{5\pi}{6}}$ و D و وزاويته Dعين ، Z لاحقة النقطة E
 - . $Z_F = 1 i\sqrt{3}$ النقطة التي لاحقتها F (4
 - أ) احسب $\frac{Z_F}{Z_F}$ واستنتج أن المستقيمين (OE) و (OF) متعامدان.
 - ب) عين Z_G لاحقة النقطة G بحيث يكون OEGF مربعا.

التمرين رقم: 16 بكالوريا 2010 رياضيات (4.5 نقطة)

 $Z^3-3Z^2+3Z-9=0$... (E) المعادلة: $\mathbb C$ المعادلة الأعداد المركبة

- Z عدد مركب (E) من أجل كل عدد مركب (E)، ثم عين الأعداد الحقيقية a و b و b بحيث، من أجل كل عدد مركب $Z^3 - 3Z^2 + 3Z - 9 = (Z - 3)(aZ^2 + bZ + c)$: فإن
 - \cdot (E) المعادلة \mathbb{C}
 - . $(O; \vec{u}, \vec{v})$ المستوي منسوب إلى المعلم المتعامد المتجانس

. $Z_C = -i\sqrt{3}$ و $Z_B = i\sqrt{3}$ و $Z_A = 3$ النقط A و A و C و B و A

بيّن أنّ المثلث ABC متقايس الأضلاع.

- $Z_D=2e^{irac{5\pi}{6}}$ و $Z_D=2e^{irac{5\pi}{6}}$ و D و D و D و و وزاويته D $\cdot E$ عين $Z_{\scriptscriptstyle F}$ لاحقة النقطة
 - $Z_F = 1 i\sqrt{3}$ النقطة التي لاحقتها F (4
 -) احسب $\frac{Z_F}{Z}$ واستنتج أن المستقيمين OE) و OF متعامدان.
 - ب) عيّن Z_G لاحقة النقطة G بحيث يكون OEGF مربعاً.

التمرين رقم: 17 بكالوريا 2010 رياضيات

 $(O; \vec{u}, \vec{v})$ المستوي منسوب إلى المعلم المتعامد والمتجانس

 $Z_I=1-2i$ و $Z_B=-1-2i$ و $Z_A=1-4i$ و النقط التي لاحقاتها على الترتيب: B ، A و النقط التي الحقاتها على الترتيب .1 Iا علم النقط B ، B و B

.
$$Z = \frac{Z_I - Z_A}{Z_I - Z_B}$$
ب الشكل الجبري العدد المركب

ج- ما هو نوع المثلث IAB ؟

C د C صورة I بالتحاكي الذي مركزه A ونسبته C . احسب اللاحقة C النقطة C

. D مرجح الجملة Z_D أحسب اللحقة Z_D . احسب اللحقة Z_D مرجح الجملة D - مرجح

و-بين أن ABCD مربع.

 $\|\overline{MA} - \overline{MB} + \overline{MC}\| = \frac{1}{2} \|\overline{MA} + \overline{MC}\|$ عين وأنشئ (Γ_1) مجموعة النقط M من المستوي حيث:

M مجموعة النقط M من المستوي حيث: $\|MA - \overline{MB} + \overline{MC}\| = 1$.

التمرين رقم: 18 بكالوريا 2010 تقني رياضي (5 نقاط) $(z-3+2i)(z^2+6z+10)=0$ المعادلة: $(z-3+2i)(z^2+6z+10)=0$

(العدد المركب الذي طويلته 1 و $\frac{\pi}{2}$ عمدة له)

النّقط D ، C ، A النّقط D ، C ، A النّقط D ، D . D ، اللاحقات: $z_I=1$ و $z_D=-3-i$ ، $z_C=-3+i$ ، $z_A=3-2i$ الترتيب.

$$\begin{cases} \arg(z-3+2i) = \arg(z-1) + \frac{\pi}{2} \\ |z-3+2i| = |z-1| \end{cases}$$
 عدد مر کب یحقق الجملة : 3

z = i ثم عين قيمة z = i بين أن الجملة تكافئ : z = i

ABCD ب $B=\overline{DC}$. ما هي طبيعة الرباعي $z_B=3$ ، تحقق أنّ : $\overline{AB}=\overline{DC}$. ما هي طبيعة الرباعي

 $z_{J} = 1 - 2i$ حيث: $z_{J} = 1 - 2i$ النقطة التي لاحقتها

. $Z = \frac{z_A - z_I}{z_B - z_J}$ اكتب على الشكل الأسي العدد المركّب Z حيث: تحقّق أنّ: $\overrightarrow{AB}=\overrightarrow{JI}$. ما هي طبيعة الرباعى

التمرين رقم: 19 بكالوريا 2010 تقني رياضي (5 نقاط) $a=-2+2i\sqrt{3}$ حيث: $a=-2+2i\sqrt{3}$

(أ هو العد المركب الذي طويلته 1 و $\frac{\pi}{2}$ عمدة له)

 $Z^2 = -2 + 2i\sqrt{3}$: Z ب- حل في مجموعة الأعداد المركبة C المعادلة ذات المجهول

. $(O; \overline{u}, \overline{v})$ uirre llaure of large llaure $(O; \overline{u}, \overline{v})$.

أ- احسب طويلة العدد المركب $\frac{Z_c - Z_A}{Z_n - Z_A}$ وعدة له.

ب- استنج طبيعة المثلث ABC.

. $arg(\overline{z}+2)=\frac{\pi}{3}$: مجموعة النقط M ذات اللاحقة z حيث (3) مجموعة النقط

أ- تحقق أن B تنتمي إلى (E).

(E) عين المجموعة (E).

التمرين رقم: 20 بكالوريا 2011 علوم تجريبية (5 نقاط)

نعتبر في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$ ، النقط B ، A و C التي لاحقاتها على $z_C = -4 + i$ و $z_B = 2 + 3i$ ، $z_A = -i$ الترتيب:

 $\frac{z_C - z_A}{1}$. أ - إكتب على الشكل الجبري العدد المركب

-ABC عين طويلة العدد المركب $\frac{z_C-z_A}{z_B-z_A}$ وعمدة له ؛ ثمّ استنتج طبيعة المثلث

2. نعتبر التحويل النقطي T في المستوى الذي يرفق بكل نقطة M ذات اللاحقة z ، النقطة M ذات اللاحقة z حيث: z'=iz-1-i

أ - عين طبيعة التحويل T محددا عناصره المميزة.

T - A -

 $z_{D} = -6 + 2i$ لتكن D النقطة ذات اللاحقة 3.

أ - بين أن النقاط A ، C و D في استقامية.

 $oldsymbol{arphi}$ - عين نسبة التحاكى h الذي مركزه A ويحوّل النقطة C إلى النقطة D

D الذي مركزه A و يحول B الذي الغناصر المميّزة للتشابه B الذي مركزه A

التمرين رقم: 21 بكالوريا 2011 علوم تجريبية (4 نقاط)

نعتبر في المستوي المنسوب إلى المعلم المتعامد والمتجانس (O; u, v)، النقط B ، B و C التي لاحقاتها على الترتيب:

$$z_C = 4i$$
 $z_B = 3 + 2i$, $z_A = 3 - 2i$

1. أ - علم الماط B ، A و D.

ب - ما طبيعة الرباعي OABC ؟ علَّل إجابتك.

 Ω مركز الرباعي Ω مركز الرباعي Ω

 $MO + \overline{MA} + \overline{MB} + \overline{MC} = 12$ عيّن ثمّ أنشئ E مجموعة النقط E من المستوي التي تحقّق: 12 عيّن ثمّ أنشئ

 $z^2-6z+13=0$ التالية: z المعادلة ذات المجهول z التالية: z المعادلة ذات المجهول عند التالية: zنسمى 20 ، 21 حلى هذه المعادلة.

ب - لتكن M نقطة من المستوى لاحقتها العدد المركب z .

- عين مجموعة النقط M من المستوي التي تحقق: $|z-z_0|=|z-z_1|$

التمرين رقم: 22 بكالوريا 2011 رياضيات (4.5 نقطة)

المستوي منسوب إلى المعلم المتعامد المتجانس $(O; \vec{u}, \vec{v})$.

 $Z_C = \sqrt{3}(1+i)$ ، $Z_B = -1+i$ ، $Z_A = 1-i$ الترتيب: لاحقاتها على الترتيب $C \cdot B \cdot A$

 z_{C} ، z_{R} ، z_{A} : اكتب على الشكل الأسى الأعداد المركبة

 $\frac{Z_B - Z_A}{Z_C - Z_A}$ ، ثم فسر هندسيا النتائج المحصل عليها. ب/ حدّد طبيعة المثلث ABC.

3/ عين لاحقة النقطة D بحيث يكون الرباعي ACBD معينا.

z' التحويل النقطى الذي يرفق بكل نقطة M من المستوي لاحقتها z' النقطة M' ذات اللاحقة T'z' = (-1+i)z + 1 - 3i

أ/ عين طبيعة التحول T وعناصره المميزة.

ب/ استنتج طبيعة التحول ToT وعناصر ه المميزة.

التمرين رقم: 23 بكالوريا 2011 تقنى رياضي (4 نقاط)

 $z^2-2\sqrt{3}z+4=0$ (E) المعادلة: $\mathbb C$ المعادلة: الأعداد المركبة

- المعادلة (E)، ثم اكتب حلولها على الشكل المثلثي.
- لمستوي منسوب إلى المعلم المتعامد والمتجانس $O(\vec{u},\vec{v})$ نعتبر النقاط $C(\vec{u},\vec{v})$ التي لاحقاتها على $C(\vec{u},\vec{v})$ $L=-rac{1}{2}-rac{\sqrt{3}}{2}i$ نضع: $z_C=\sqrt{3}-i$ ، $z_B=\sqrt{3}+i$ ، $z_A=2i$ الترتيب:
- أ) اكتب L على الشكل الأسي. $z_A z_B = L(z_C z_B)$ أنب أثبت أن C بتحويل نقطي يطلب تعيينه وتحديد
 - ج) استنتج نوع المثلث ABC ثم احسب مساحته S.

التمرين رقم: 24 بكالوريا 2011 تقني رياضي (4 نقاط) التمرين رقم: 24 بكالوريا المعلم المتعامد والمتجانس $(O; \overline{u}, \overline{v})$ منسوب إلى المعلم المتعامد والمتجانس

- العدد المركب المعرف كما يلي: $L=rac{-4\sqrt{2}+i\sqrt{2}}{5+3i}$. لا العدد المركب المعرف كما يلي L
 - 1/ أ) اكتب L على الشكل الجبرى ثم على الشكل الأسي.
- ب) بيّن أن: $L^{12}+1=0$ ، ثم احسب: $(5+3i)^{12}+(5+3i)^{12}$ ، ثم احسب: $L^{12}+1=0$
- ج) n عدد طبیعی فردی و p عدد طبیعی زوجی أثبت أن: $0=L^{4n}+L^{4p}=0$ عدد طبیعی فردی و
- النقطتان A و B لاحقتاهما على الترتيب: $z_A = 5 3i$ و $z_A = 5 + 3i$ عين اللاحقة z_A للنقطة (2) A' صورة النقطة A بالتشابه المباشر الذي مركزه النقطة B ونسبته $\sqrt{2}$ وزاويته A'
 - ب) عين zc لاحقة النقطة G مركز ثقل المثلث 'ABA'

التمرين رقم:25 بكالوريا 2012 علوم تجريبية (4 نقاط)

- $z=rac{3i(z+2i)}{z-2+2i}$: التالية الأعداد المركبة $\mathbb C$ المعادلة ذات المجهول z التالية (1 $(z \neq 2-3i)$ حيث
 - حل في C هذه المعادلة.
- ينسب المستوي المركب إلى المعلم المتعامد و المتجانس $(O; \overrightarrow{u}, \overrightarrow{v})$ و B نقطتان لاحقتاهما على (2 $z_{B} = 1 - i\sqrt{5}$ و $z_{A} = 1 + i\sqrt{5}$: حيث $z_{B} = 2$ و $z_{A} = 1 + i\sqrt{5}$
 - تحقق أنّ A و B تنتميان إلى دائرة مركزها O يطلب تعيين نصف قطرها.
- $z'=rac{3i(z+2i)}{z-2+3i}$ من المستوي لاحقتها $z'=\frac{3i(z+2i)}{z-2+3i}$ النقطة M' لاحقتها $z'=\frac{3i(z+2i)}{z-2+3i}$ من المستوي لاحقتها $z'=\frac{3i(z+2i)}{z-2+3i}$. [CD] محور القطعة $z_{E}=3i$ و $z_{D}=2-3i$ ، $z_{C}=-2i$ النقط $E\cdot D\cdot C$ محور القطعة الترتيب:
 - أ- عبر عن المسافة 'OM بدلالة المسافتين CM و .DM
- ب- استنتج أنّه من أجل كل نقطة M من (Δ) فإنّ النقطة M' تتتمى إلى دائرة (γ) يطلب تعيين مركزها E نصف قطرها. تحقق أن E تتمي إلى

التمرين رقم: 26 بكالوريا 2012 علوم تجريبية (5 نقاط)

 $P(z) = z^3 - 12z^2 + 48z - 72$: حيث: Z حيث المركب للمتغيّر المركب $P(z) = z^3 - 12z^2 + 48z - 72$

P(z) أ- تحقّق أنّ 6 هو جذر لكثير الحدود

P(z)=0 المعادلة \mathbb{C} ، المعادلة الأعداد المركبة

نقط من C ، B ، A . $(O; \overrightarrow{u}, \overrightarrow{v})$ ستجامد و المتجامد و المتعامد عند C ، C ، C ، C نقط من

. $z_{C}=3-i\sqrt{3}$ و $z_{B}=3+i\sqrt{3}$ ، $z_{A}=6$: المستوي المركب لواحقها على الترتيب

أ-اكتب كلاً من Z_A ، Z_B و Z_C على الشكل الأسي.

ب-اكتب العدد المركب $\frac{Z_A-Z_B}{Z_A-Z_C}$ على الشكل الجبري، ثم على الشكل الأسي.

ج-استتج طبيعة المثلث ABC.

. $\frac{\pi}{2}$ ليكن S التشابه المباشر الذي مركزه C ، نسبته $\sqrt{3}$ و زاويته $\sqrt{3}$

. S بالتشابه A مين مين Z_A بالتشابه A

ج- بيّن أنّ النقط A '، B ، A في استقامية.

التمرين رقم: 27 بكالوريا 2012 رياضيات (4 نقاط)

. $z^2 - \sqrt{2}z + 1 = 0$: z = 0 المعادلة ذات المجهول z = 0 المعادلة ذات المجهول المعادلة المركبة

لمستوي المركب منسوب إلى المعلم المتعامد والمتجانس (v المستوي التي لاحقاتها (v المستوي التي لاحقاتها (v

 $Z_C = Z_A + Z_B$ على الترتيب: $Z_B = \overline{Z}_A$ ، $Z_A = \frac{1+i}{\sqrt{2}}$

أ- اكتب على الشكل الأسي الأعداد المركبة: Z_B و Z_B .

O مين لاحقة كل من A' من B' ، A' مور النقط A' ، B و A' على الترتيب بالدوران الذي مركزه

ج- بيّن أن الرباعي 'OA'C'B مربع.

 $|z-z_A|=|z-z_B|$ مجموعة النقط M من المستوي ذات اللاحقة z حيث: مجموعة النقط M

أ- بيِّن أن (۵) هو محور الفواصل.

ب- بيِّن أن حلي المعادلة: i=i عددان حقيقيان. (لا يطلب حساب الحلين)

التمرين رقم: 25 بكالوريا 2012 شعبة رياضيات (4 نقاط)

- . $(z^2+4)(z^2-2\sqrt{3}z+4)=0$ المعادلة ذات المجهول z التالية: $(z^2+4)(z^2-2\sqrt{3}z+4)=0$ المعادلة ذات المجهول z
 - D و C ، B ، A النقط المركب المنسوب إلى المعلم المتعامد والمتجانس $(O\,;\vec{u},\vec{v}\,)$ ، النقط C $z_D=\overline{z_C}$ و $z_C=-2i$ ، $z_B=\overline{z_A}$ ، $z_A=\sqrt{3}+i$ و التي لواحقها على الترتيب:
 - بين أن النقط A، B و D تتمى إلى دائرة (γ) يطلب تعيين مركزها ونصف قطرها، ثم أنشئ -.D و C ، B ، A النقط
 - . O نرمز بـ Z_E إلى لاحقة النقطة E نظيرة النقطة B بالنسبة إلى المبدأ

$$\frac{z_A - z_C}{z_E - z_C} = e^{i(-\frac{\pi}{3})}$$
: نُن أَن:

ب- بيِّن أن النقطة A هي صورة النقطة E بدوران R مركزه C يطلب تعيين زاويته.

ج- استنتج طبيعة المثلث AEC .

C د H هو التحاكي الذي مركزه O ونسبته H

– عيّن طبيعة التحويل $R\, o H$ وعناصره المميزة، ثم استنتج صورة الدائرة (γ) بالتحويل $R\, o H$.

التمرين رقم: 26 بكالوريا 2012 تقنى رياضى (6 نقاط)

$$\begin{cases} 2z_1 + 3z_2 - 9 - 2i \\ 3z_1 - z_2 = 8 + 8i \end{cases}$$
 : بحيث: $z_2 = z_1$ بحيث العددين المركبين $z_1 = z_1$

 Ω و B ، A النقط $(O; \vec{u}, \vec{v})$ المتعامد والمتجاهد والمتجاهد والمتجاهد و O النائع المركب المنسوب إلى المعلم المتعامد والمتعامد والمتعا

 $Z_0 = 1 - 2i$ و $Z_B = -3$ ، $Z_A = 3 + 2i$: $Z_0 = Z_B$ ، Z_A و Z_B و Z_B و الترتيب

- $\cdot Z_B Z_\Omega = i (Z_A Z_\Omega)$ أثبت أنّ: (أ
 - ب) عين طبيعة المثلث ΩAB.
- . 2 هو التحاكي الذي مركزه النقطة A ونسبته A
 - أ) عين الكتابة المركبة للتحاكي h.
- ب عين z_c لاحقة النقطة C صورة النقطة Ω بالتحاكي A.
- $\{(A,1),(B,-1),(C,1)\}$ عين (A,1) لاحقة النقطة D مرجح الجملة عين (A,1)
 - د) بيّن أن ABCD مربع.
- $||\overline{MA} \overline{MB} + \overline{MC}|| = 4\sqrt{5}$ مجموعة النقط M من المستوي التي تحقق: (E) 4
- أ) تحقق أن النقطة B تنتمى إلى المجموعة (E)، ثم عيّن طبيعة (E) و عناصر ها المميزة.
 - ب) أنشئ المجموعة (E).

التمرين رقم: 27 بكالوريا 2012 تقنى رياضى (5 نقاط)

التمرين الأول: (05 نقاط)

-1 حل في مجموعة الأعداد المركبة \mathbb{C} ، المعادلة ذات المجهول

$$(z^2 + 2z + 4)(z^2 - 2\sqrt{3}z + 4) = 0$$

 $(o; \vec{u}, \vec{v})$ المستوي المركب منسوب إلى المعلم المتعامد و المتجانس

يب: الترتيب: D و D نقط من المستوى الحقاتها على الترتيب:

$$.Z_D = -1 + i\sqrt{3}$$
 , $Z_C = -1 - i\sqrt{3}$, $Z_B = \sqrt{3} - i$, $Z_A = \sqrt{3} + i$

أ) اكتب كلا من Z_{A} ، Z_{B} ، Z_{C} على الشكل الأسي.

. ب تحقق أنّ :
$$z_D - Z_B = i$$
 ، ثم استنج أن المستقيمين (AC) و (BD متعامدان .

د. العدد المركب الذي طويلته $\frac{1}{2^n}$ و $\frac{2\pi}{3}$ عمدة له حيث n عدد طبيعي. z_n -3

 $L_n = z_D \times z_n$ العدد المركب المعرف بــ L_n

أ) اكتب كلا من L_1 ، L_0 على الشكل الجبري.

$$U_n = |L_n|$$
 . هي المتتالية المعرفة من أجل كل عدد طبيعي n كما يلي: $U_n = |U_n|$

أثبت أنَّ المتتالية (U_n) هندسية يطلب تعيين أساسها وحدها الأول. -

. + ∞ الح يؤول n الح S_n عندما يؤول