المستوى: 3 ع.ت السلسلة رقم 01 النهايات و الإستمرارية الأستاذ بم العربي س د 12 / 2013

01 في كل حالة احسب نهايات الدالة f عند أطراف مجال عريفها ، ثم أكتب معادلات المستقيمات المقاربة لمنحنى f.

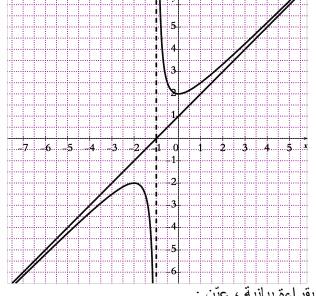
$$\mathbb{R} - \{1,3\}$$
معرفة على $f(x) = \frac{-x^2 + 4x}{x^2 - 4x + 3}$ (1)

$$\mathbb{R} - \{1\}$$
معرفة على $f(x) = \frac{x^2 - x - 2}{(x - 1)^2}$ (2)

$$\mathbb{R}$$
 معرفة على $f(x) = \frac{-4x + 8}{x^2 - 4x + 5}$ (3

$$\mathbb{R} - \{1\}$$
معرفة على $f(x) = \frac{-2x^2 + 3x - 2}{x - 1}$ (4)

$$\mathbb{R} - \{-1\}$$
 معرفة على $f(x) = 2x + 3 - \frac{1}{(x+1)^2}$ (5


02 احسب النهايات التالية باستعمال طريقة مناسبة.

$$\lim_{x \to +\infty} (x - 2\sqrt{x}) \ (2 \cdot \lim_{x \to 2} \frac{x^2 - 3x + 2}{x^3 - 8} (1$$

$$\lim_{x \to -1} \frac{\sqrt{x+5}-2}{x+1} \left(4 \cdot \lim_{x \to 4} \frac{\sqrt{x}-2}{x^2-5x+4} \right) (3)$$

$$\lim_{x \to \pm \infty} (\sqrt{x^2 + 4x + 3} - x) \left(6 \cdot \lim_{x \to +\infty} \frac{x \sqrt{x}}{x + 1} \right)$$

f في الشكل الآتي ،المنحى (C) هو التمثيل البياني للدالة 03

1ٍ) بقراءة بيانية ، عيّن :

أ) مجموعة التعريف D للدالة f ثم نهايات f عند أطراف D ب) المستقيمات المقاربة لـD ومعادلاتها.

ج)الوضع النسبي لـ(C)بالنسبة لمستقيمه اللمقارب المائل هـ)إشارة f(x).

$$g(x) = \sqrt{f(x)}$$
 دالة معرفة ب $g(x) = \sqrt{f(x)}$

$$]-1;+\infty[$$
 هي: $]\infty+;+\infty[$

ب)أوجد نهاية g عند 1- وعند ∞+

 \cdot و ينم أعط إتجاه تغير الدالة \cdot \cdot \cdot احسب \cdot \cdot و \cdot \cdot أحسب

$$f(x) = ax + b + \frac{c}{x+d}$$
 نتكن الدالة $f(x) = ax + b + \frac{c}{x+d}$

d و c ، b ، a و (C) تمثیلها البیاني. عین الأعداد الحقیقیة
$$x=1$$
 و مستقیما بحیث $x=1$ و مستقیما مقاربا معادلته $y=2x+3$ عند $y=2x+3$ و یشمل النقطة $x=1$

.
$$f(x) = \sqrt{x^2 + 4x + 5}$$
 : بالة معرفة على \mathbb{R} بالدة معرفة على 05

$$(O, \vec{i}, \vec{j})$$
 البياني في معلم ر يرمز (C_f)

$$\lim_{x\to+\infty} \left[f(x) - (x+2) \right]$$
 ثم $\lim_{x\to+\infty} f(x)$ ا- احسب (1) ا- احسب بيانيّا بيانيّا .

احسب
$$\lim_{x \to -\infty} f(x)$$
 ،ثم بیّن أنه یوجد عددان حقیقیّان (2

$$\lim_{x\to\infty} \frac{f(x)}{x} = \lim_{x\to\infty} \frac{f(x)}{x}$$
 و $\lim_{x\to\infty} \frac{f(x)}{x} = a$ ماذا تستنتج؟

06 أدالة عددية جدول تغير اتها التالي:

		_ي.	• •	<u>, </u>	· ·	- 00
X	-8	-2	-	1	0	+∞
f'(x)	+	0	-	-	0	+
f(v)	~~/	▼ 2	3 .	+8/	^ 2	→
$I(\Lambda)$			-			

نفرض أنf(x) تكتب على الشكل:

عداد حقیقیة.
$$f(x) = ax + b + \frac{c}{x+1}$$

1) أحسب f'(x) بدلالة c ، a

2) اعتمادا على جدول التغيرات للدالة f:

أ) عين الأعداد الحقيقية c · b · a

ب) عين $\lim_{x \to -1} f(x)$ و " $\lim_{x \to -1} f(x)$ و النتيجتين بيانيا.

(3) أثبت أن ، في معلّم المنحنى (Γ) الممثل للدالة f يقبل y = x + 1 معادلته: f معادلته f

أدرس الوضع النسبي للمنحني (Γ) والمستقيم (Δ) . ثم

إنشئ المنحنى (Γ) والمستقيم (Δ) .

 $x \in \mathbb{R}$ کل اثبت أنه من أجل کل (1 07

$$\frac{1}{3} \le \frac{1}{2 - \cos x} \le 1 \le 1 \le 2 - \cos x \le 3$$

$$g(x) = \frac{2 - \cos x}{x}$$
 و $g(x) = \frac{x}{2 - \cos x}$ ع و دالتان حيث: $g(x) = \frac{x}{2 - \cos x}$

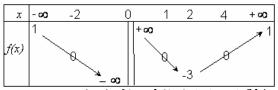
 $-\infty$ عند ∞ + و عند ∞

ب)أدرس نهاية g عند 0 من اليمين و عند 0 من اليسار.

 \mathbb{R} نعتبر الدالة f المعرفة على \mathbb{R} بـ:

$$\begin{cases}
f(x) = \frac{1 - \sqrt{1 + x}}{x} ; x > 0 \\
f(x) = \frac{1 - x^2}{x - 2}; x \le 0
\end{cases}$$

- 0. عند f عند واستمراریة f عند (1) احسب \mathbb{R} أدرس استمرارية \mathbf{f} على \mathbb{R} .
- أحسب $\lim_{x\to +\infty} f(x)$ ثم فسر النتيجة هندسيا.


لتكن
$$f$$
 الدالة المعرفة على \mathbb{R} كمايلي:

$$\begin{cases} f(x) = \frac{2x^2 - \alpha + 3}{x} : x \le 2 \\ f(x) = x^2 + 2x - \alpha : x > 2 \end{cases}$$

عين قيمة α بحيث تكون f مستمرة عند2.

11 جب إما بصحيح وإما بخطأ مع التعليل.

الدالة المعرفة بجدول تغيراتها التالى : f

- المعادلة f(x) = 1 تقبل حلا واحدا.
- المعادلة f(x) = -3 المعادلة (2
- $[0; +\infty[$ المجال [0; 4] بالدالة $[0; +\infty[$ معورة المجال المجال إلى المجال إلى المجال المجا

$$f(x) = 4x^3 - 3x - \frac{1}{2}$$
 :ب $[-1;1]$ جدالة معرفة على [11]

- f(-1) ، f(-0.5) ، f(0) ، f(1) أحسب (1
 - f(x) = 0أستنتج عدد حلول المعادلة)
- $f(x) = 2x^3 3x^2 1$ دالة كثيرة حدود معرفة بـ: 12
 - \mathbb{R} برر استمراریة الدالهٔ f علی \mathbb{R}
 - $-\infty$ عند $-\infty$ وعند $+\infty$ احسب نهایة $+\infty$
 - 3) ادرس اتجاه تغيرات f ثم شكل جدول تغيراتها.
- من المجال α من المجال علا وحيدا α من المجال (4)
 - f(x) أيثم استنتج حسب قيم x اشارة [1,6;1,7]

$$f(x) = \frac{x^3 - 5x^2 + 4}{x^2}$$
: ب \mathbb{R}^* على \mathbb{R}^* على على \mathbb{R}^* واليكن (C) تمثيلها البياني

$$f(x)=x-5+rac{a}{x^2}$$
 :بين أنه من أجل كل x من * هاِن (1

حيث a عدد حقيقي يطلب تعيينه

- $\lim_{x\to 0} f(x)$ و $\lim_{x\to -\infty} f(x)$ ، $\lim_{x\to +\infty} f(x)$ أحسب (2
 - \mathbb{R}^* من \mathbf{x} من أجل كل \mathbf{x}

$$f'(x) = \frac{(x-2)(x^2+2x+4)}{x^3}$$
: فإن

ب)ستنتج اتجاه تغير الدالة f ثم شكل جدول تغيراتها. 4)أثبت أن المنحنى (C) يقبل مستقيمين مقاربين أحدهما مائل ، يطلب تعيين معادلتهما.

ماس (Δ) معادلة لـ (Δ) مماس (Δ) عادلة الفاصلة (5

(C) أرسم (Δ) ثم المنحنى (6

 $f(x) = \frac{x^2 - x + 1}{x^2 + 1}$ دالة معرّفة على \mathbb{R} بـ: 14

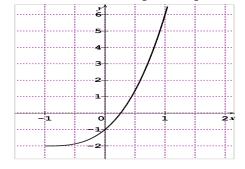
واليكن (C) تمثيلها البياني في معلم متعامد ومتجانس

 $f(x)=1-\frac{x}{x^2+1}$: $x \in \mathbb{R}$ بين أنه من أجل كل (1

أحسب $\lim_{x \to \infty} f(x)$ أحسب (2

y=1 درس وضعية (Δ) بالنسبة للمستقيم (Δ) معادلته (C)

4)جد f'(x) واستنتج انجاه تغیر f و شکل جدول تغیر انها


f(-x) = 2 - f(x): $x \in \mathbb{R}$ کل (5) بیّن أنه من أجل کل

واستنتج أن(C) يقبل مركز تناظر @يطلب تعيين احداثيياها

(C) بين أن (C)يقبل نقطة انعطاف (T)أرسم ((D)و ((D)).

15ب. ش.ع تجريبية دورة 2008)

المندني (C) المقابل هو التمثيل البياني للدالة عددية g المعرفة $g(x) = x^3 + 3x^2 + 3x - 1$ على المجال $=]-1;+\infty[$

2-أ)بقراءة بيانية شكل جدول تغيرات الدالة g g(0,5) وإشارة g(0)

 $g(\alpha) = 0$: يحقق $\alpha \in [0;0,5]$ يحقق وجود عدد حقيقي

Iاستنتج إشارة g(x) على المجال

 $[-1;+\infty]$ دالة معرّفة على المجال $[-1;+\infty]$ بـ:

البياني $f(x) = \frac{x^3 + 3x^2 + 3x + 2}{(x+1)^2}$

 $f'(x) = \frac{g(x)}{(x+1)^3}$: $x \in I$ کل أيحقق أنه من أجل كل

ب) عین دون حساب $\lim_{x\to\alpha} \frac{f(x)-f(\alpha)}{x-\alpha}$ و فسر النتیجة بیانیا.

ج)جد $\lim_{x\to\infty} f(x) - (x+1)$ و $\lim_{x\to\infty} f(x)$ فسر النتيجتين بيانيا

د) شكل جدول تغيرات f

 10^{-2} الي أخذ: $\alpha = 0.26$

 (Γ) أرسم المنحنى