الجمهورية الجزائرية الديمقر اطية الشعبية

2011/2010

وزارة التربية الوطني

ثانوية السعيد عبيد عين التوتة - باتنة

المستــوى: 3 ت رياضـــ

دة: 3 ساعات

الإختبار الثلاثي الأول في مادة العلوم الفيزيائية

التمرين الأول: (08ن) في التجربة التالية نريد دراسة تطور التفاعل بين شوارد ثيو كبريتات وشوارد الأكسونيوم $S_2O_3^{2-}$

 $H_3O^+ + Cl^-$ الأدوات: أربعة (04) بياشر متماثلة محلول حمض كلور الهيدروجين

. محلول ثيو كبريتات الصوديوم $-2Na^+ + S_2O_3^{2-}$ كرونومتر –

إن هذا التفاعل بطيء لذلك يمكن متَّابِعَّة ظهور الكبريت بالعين المجردة حيث نضع تحت كل بيشر ورقة تحمل علامة (+) سوداء وعند لحظة مرج المحلولين (t=0) نشغل الكرونومتر ثم نقيس المدة الضُرورية لحجب العلامة (+) بالنسبة لملاحظ يشاهد سطح المزيج شأقوليا (t_d)

 $C_1 = 0.25 \, mol \, / \, l$ حجم محلول ثيو كبريتات الصوديوم تركيزه المولى (V_1

 $C_2 = 1 \mod / l$ محلول حمض کلور الهيدروجحين ترکيزه المولى کلور الهيدروجحين ترکيزه المولى

 $V_1 + V_2 + V_3 = 50$ المضاف، نحقق أربعة خلائط حيث الماء المضاف، نحقق أربعة خلائط حيث

وفقا للجدول التالي: (في كل الحالات نضيف محلول ثيو كبريتات في الأخير ثم نشغل الكرونومتر).

الخليط	$V_1(ml)$	$V_2(ml)$	$V_3(ml)$	$t_d(s)$
الخليط (المزيج)		_		
1	10	6	34	130
2	20	6	24	90
3	30	6	14	60
4	40	6	4	25

1/ أ- ما هما الثنائيتان OX/Red الداخلتان في التفاعل ثم أكتب المعادلتين التصفيتين؟ ب- ماهي الشوارد المتواجدة في الخليط عند اللحظة (t) أو ماهي الخاملة منها؟

ج- كيف تدعى هذه الظاهرة لشاردة ($S_2O_3^{2-}$)؛ برر إُجَابِتك. 2/ أ- لماذا نضيف الماء في كل خليط؛

ب- أحسب قيمة التركيز المولى للمتفاعلات عند اللحظة (t=0) في كل خليط موضحا ذلك في جدول. ج- مآهو العامل الحركي الذي يبرر التطور الزمني لتضليل (أو عتامة) الخلائط (4)؟ 3/ أ- مثل جدول تقدم التفاعل من أجل الخليط (1). وماهو المتفاعل المحد في كل تجربة.

ب- أحد الخلائط بير ز خاصية ما هي؟

4/ في كل خليطٌ (مزيج) أحسب كتّلة الكبريت(s) الناتجة عند نهاية التفاعل، واصفا مظهر البياشر الأربعة (4)

أ لتكن (n_d) كمة مادة النوع الصلب الضرورية لحجب العلامة (+). هل هذه الكمية تتعلق ب $\frac{1}{2}$ سمَّكَ طبقة السائل – الإضاءة في التجربة – وضعية عين الملاحظ؟ مساحة مقطع البيشر

 $M_s = 32 \ g.mol^{1-}$ يعظى:

التمرين الثاني: (80ن)

نحقق دار ة كهر بائية مكونة من:

مولدٍ للتوتر E=6V ، ناقل أومي $(R=90\Omega)$ ، وشيعة E=6V ، قاطعة

1/ أرسم مخطط الدارة وبين عليها التوصيل براسم الاهتزاز المهبطى ذي ذاكرة حتى نتمكن من

 $U_R = f(t), U_L = f(t)$ شاهدة البيانين . t=0 نغلق القاطعة عند اللحظة الغلق القاطعة

 U_R و U_L أ- أعط العبارة الحرفية لكلا من U_L و

ب- أوجد القيمة التقريبية لثابت الزمن (ر) علما أن الوشيعة تكتسب % 99.4 من طاقتها العظمى خلال مدة منية

 $\Delta t = 25ms$ قدر ها

وماهو مدلوله العملي بالنسبة للدارة؟ $\frac{L}{R+r}$ ج- حدد وحدة المقدار

د- بين أنه يمكن كتابة المعادلة التفاضلية للتيار i(t) بالشكل: $\frac{di}{dt} = b - a.i(t)$ وماذا يمثل كلا من a

ناسب لقمتى المعادلة التفاضلية السابقة و هذا من أجل اختيار مناسب لقمتى $i(t) = \alpha(1 - e^{-\beta t})$ هــ تأكد أن: کلا من:

 β و α

i(t) ندرس تغيرات المقدار $\frac{di}{dt}$ بدلالة الشدة اللحظية للتيار (i(t)

فنحصل على الجدول التالي:

i(mA)	0	15	30	45	52.5
$\frac{di}{dt}(A/S)$	12	9	6	3	1.5

 $\frac{di}{dt} = f(i)$ أ- أرسم البيان:

ب- اعتمادا على البيان: ماهو المقدار بين (r,I_0,L, au) الذي يمكن استنتاجه؟

ج- حدد المقادير المتبقية

 $(\tau)^{2}$ يتو افق مع قيمته في المطلوب $(\tau)^{2}$ يتو افق

4/ أ- ماهو نوع الطاقة المخزنة بالوشيعة؟

ب- أحسب قيمتها عندما يسجّل جهاز الفولط متر بين طرفي الوشيعة القيمة (1.5V)؟

أرسم البيان $U_L = f(t)$ عند اللحظات: $0, \tau, 5\tau, \infty$ من غلق القاطعة.

التمرين الثالث: (04) يستعمل اليود المشع I_{53}^{131} في الطب النووي، فإذا علمت أن نشاط عينه منه عند اللحظة

t = 0

هو: Bq $2.2 \times 10^5 Bq$ هو: t=0 أوجد عدد الأنوية المشعة عند اللحظة t=0

t=4J ' t=0 الحظتين النشاط $\left(\left| \frac{\Delta A}{A_0} \right| \right)$ بين اللحظتين /2

3- ماهو عدد الأنوية المتبقية بعد سنة (t = 1ans) ماذا تستنتج?

t = 8.1 jours_ يعطى:

بالتو فبق: أستاذ المادة: لوشان

(2/2) ص