السنة الدراسية: 1433/1432 هـ// 2011/2011 م

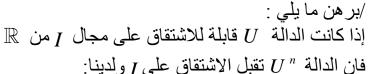
الامتحان الفصلي الأول

3 علوم تجريبية. المستوى: 3 علوم الختبار في مادة: الرياضيات

المدة: ثلاث ساعات ونصف

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول (04,5 نقط):



$$(U^n)' = nU'U^{n-1}$$

التمثيل البياني المقابل هو لدالة g قابلة للاشتقاق على 2[-4,1] المجال

g'(x) عين إشارة g(x) ثم إشارة

ب/ نعتبر الدالة f المعرفة على المجال [-4,1] بـ:

$$f(x) = \left[g(x)\right]^4$$

جـ/أحسب f'(x) و استنتج إشارتها.

f أعط جدول تغير ات الدالة f

 \mathbb{R} هـ/حدد عدد حلول المعادلة : $f(x) = \lambda$ لما λ يتغير في

التمرين الثاني (04,5 نقط):

نعتبر كثير الحدود للمتغير الحقيقى x حيث:

$$Q(x) = 2x^3 - x^2 - 15x + 18$$

Q(x) = 0: x ثم حل في مجموعة الأعداد الحقيقية المعادلة ذات المجهول الحقيقي Q(x) = 02. استنتج حلول المعادلات التالية:

$$2e^{3x} - e^{2x} - 15e^x + 18 = 0$$

$$2e^{6x} - e^{4x} - 15e^{2x} + 18 = 0$$

$$2(\ln x)^3 - (\ln x)^2 - 15\ln x + 18 = 0$$

التمرين الثالث (04 نقاط):

لكل سؤال من الأسئلة التالية جواب واحد صحيح فقط. عين الجواب الصحيح معللا اختيارك. نعتبر في الفضاء المنسوب إلى معلم متعامد ومتجانس $(o; \vec{i}, \vec{j}, \vec{k})$ النقط:

x-3z-4=0 والمستوي (P) الذي معادلته: D(3;2;1) (C(-2;0;-2) (B(4;1;0)) (A(1;3;-1) (ABD) (3C(-2;0;-2)) هو: D(3;2;1) (D(3;2;1)) D(3;2;1) (D(3;2;1)) هو: D(3;2;1)

 $\overrightarrow{n_3}(2;0;-1)$ (3 \overline{t} $\overrightarrow{n_2}(-2;0;6)$ (2 \overline{t} $\overrightarrow{n_1}(1;2;1)$ (1 \overline{t}) (P) هو: \overline{t} (P) شعاع ناظمي للمستوي (P) هو: \overline{t} (P) هي: \overline{t} (P) هيا \overline{t} (P) النقطة (P) هيا \overline{t} (P) هيا $\overline{t$

4 / سطح الكرة (S) الذي مركزه D ونصف قطره 2 يقطع المستوي (P) في :

 ج1) نقطة
 ج2) دائرة

التمرين الرابع (07 نقاط):

الجزء الأول:

. $g(x)=1-x^2-\ln x:-10;+\infty$ لتكن g الدالة العددية المعرفة على $g(x)=1-x^2-\ln x$

.]0; + ∞ [على] ∞ + (1

. g(x) ثم استنتج، حسب قیم g(1) احسب g(1)

الجزء الثاني:

 $f(x) = \frac{\ln x}{X} - x + 2$: بعتبر الدالة العددية f المعرفة على $f(x) = \frac{\ln x}{X} - x + 2$: بعتبر الدالة العددية المعرفة على المعرفة عل

نسمي (c) المنحني الممثل للدالة f في المستوي المنسوب إلى المعلم المتعامد و المتجانس (c) (c)

راً المسبُ نُهاية الدالة f عند f مسر هندسيا هذه النتيجة f

 $+\infty$ عند f عند هاية الدالة

جــ بيّن أن المستقيم (D) الذي معادلته y=-x+2 هو مستقيم مقارب مائل $+\infty$ عند $+\infty$

(D) النسبة للمنتفي ((C) بالنسبة للمستقيم ((D) بالنسبة المستقيم ((D)

. $f'(x) = \frac{g(x)}{x^2}$ ، $]0; +\infty[$ من أجل كل x من أجل كل (2

ب- استنتج اتجاه تغيّر الدالة f وشكل جدول تغيّر اتها .

(D) أ- عين إحداثيي النقطة A من (c) التي يكون المماس عندها موازيا للمستقيم e . e مماس المنحني e عند النقطة ذات الفاصلة e . e هو العدد الذي يحقق e . e (e)

.]0;1[من المعادلة α من المجال f(x)=0 تقبل حلا وحيدا α من المجال]0;1.

. (c) و المنحني (T) ، (D) ارسم المستقيمين (5

الموضوع الثاني

التمرين الأول (07 نقط):

 $f(x) = (ax + b)e^{x-1} + c$ نعتبر الدالة $f(x) = (ax + b)e^{x-1} + c$ نعتبر الدالة والمعرفة على مجموعة الأعداد الحقيقية

حيث
$$a$$
 ، d و c أعداد حقيقية يطلب تعيينها في الجزء أ

fنعبر بـ f' الدالة المشتقة للدالة

ليكن (
$$C$$
) المنحني الممثل للدالة f في معلم متعامد ومتجانس أنظر الشكل المقابل.

المنحنى
$$A(1;5)$$
 يشمل النقطة $A(1;5)$ ويقبل

المستقيم (
$$D$$
) كمماس له عند هذه النقطة

المنحنى
$$(C)$$
 يقبل مماسا موازيا لمحور

$$-\frac{1}{2}$$
 الفواصل عند النقطة ذات الفاصلة

الجزء أ

$$f'(1) = f'(-\frac{1}{2}) \cdot f(1) : 1$$

$$f'(x) = (ax + a + b)e^{x-1}$$
 : فإن $f(x) = (ax + a + b)e^{x-1}$ فإن $f(x) = ax + a + b$

$$c$$
 و b ، a قيم الأعداد الحقيقة b ، مما سبق استنتج قيم الأعداد الحقيقة

الجزء ب

$$f(x) = (2x-1)e^{x-1} + 4$$
 نقبل في بقية التمرين أنه من أجل كل عدد حقيقي x فإن: $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f(x)$ / 1

$$f(x) = \frac{2}{e}xe^x - \frac{1}{e}e^x + 4$$
: ب کتحقق أنه من أجل کل عدد حقيقي عدد حقيقي ب ا

. (
$$C$$
) ماذا تمثل النتيجة بالنسبة للمنحني ا $\lim_{x \to -\infty} f(x)$ ثم استنتج

$$f$$
 أ / احسب $f'(x)$ ثم ادرس إشارتها مستنتجا اتجاه تغيرات الدالة f ر f شكل جدول تغيرات الدالة f

$$\mathbb{R}$$
 من أجل كل x من أجل من أجل

د / أثبت أن المعادلة
$$f\left(x\right)=6$$
 تقبل حلا وحيدا α من المجال α ثم اعط حصر العدد α سعته α . α

التمرين الثاني (04 نقاط):

في الفضاء المنسوب إلى معلم متعامد ومتجانس $(O; \vec{i}, \vec{j}, \vec{k})$ نعتبر النقط:

D(1;-1;-2) ' C(3;0;-2) ' B(1;-2;4) ' A(2;3;-1)

2x-y+2z+1=0 : ليكن (π) المستوي المعرف بمعادلته الديكارتية

المطلوب : أجب بصحيح أو خطأ مع تبرير الإجابة في كل حالة من الحالات التالية:

النقط A ، B و C في استقامية.

25x - 6y - z - 33 = 0 : مستو معادلة ديكارتية له (ABD)

 (π) عمودي على المستقيم (CD) عمودي على المستوي

H(1;1;-1) هو النقطة B على (π) هو النقطة 4.

التمرين الثالث (09 نقاط):

الجزء الأول:

نعتبر الدالة العددية g المعرفة على المجال $]_{\infty+,\infty}$ ب :

$$g(x) = x + 1 + \ln x$$

 $+\infty$ عين نهايتي الدالة ل عند 0 و عند ∞

2. ادرس اتجاه تغیر الدالة g ثم شكل جدول تغیر اتها.

. $]0;+\infty[$ في المجال g(x)=0 تقبل حلا وحيدا α

0.1 اوجد حصرا للعدد α سعته.

.]0;+ ∞ [على المجال g(x) على المجال .5

الجزء الثانى: نعتبر الدالة f المعرفة على $[0;+\infty[$ كما يلي

$$\begin{cases} f(x) = \frac{x \ln x}{x+1} & x \in]0; +\infty[\\ f(0) = 0 \end{cases}$$
:

. 4cm هي معلم متعامد و متجانس $\left(o;\overrightarrow{i};\overrightarrow{j}\right)$ حيث وحدة الطول هي ليكن $\left(C\right)$

. $[0;+\infty[$ الدالة f مستمرة على المجال الدالة الدالة المتارة على الدالة الدا

2. هل تقبل الدالة f الاشتقاق عند 0 ? فسر بيانيا النتيجة.

f من اجل كل x من $f'(x) = \frac{g(x)}{\left(x+1\right)^2}$ ، بين أن $g(x) = \frac{g(x)}{\left(x+1\right)^2}$ ، استنتج اتجاه تغير الدالة $g(x) = \frac{g(x)}{\left(x+1\right)^2}$

f الدالة f عند f عند f عند f عند f عند f الدالة f عند f عند f الدالة f

. $\left(o;\overrightarrow{i};\overrightarrow{j}
ight)$ التمثيل البياني للدالة $x o \ln x$ في المعلم البياني للدالة .5

. (Γ) و (C) الأوضاع النسبية للمنحنيين

 (Γ) و (C) و النتيجة . ارسم المنحنيين $\lim_{x \to +\infty} [f(x) - \ln x]$ و احسب النهاية

