M(z) نعتبر في المستوي المركب النقط $B(1)\cdot A(2i)$ و $D(1)\cdot B(1)\cdot A(2i)$

$$L(z) = \frac{z-2i}{z-1}$$
 حيث: لعدد المركب L حيث

الكتب L(1+i)، L(-i) على الشكل الجبري L(1+i)

عددان حقیقیان $y \cdot x$ حیث z = x + iy نضع (2

L(z) = 1 + i أ) حل في $\mathbb C$ المعادلة

ب) اكتب (L(z على الشكل الجبري

ج) عين ثم انشئ مجموعة النقط M(z) في كل حالة:

|L(z)| = 1 * اتخیلیا صرفا، <math>L(z) حقیقیا، L(z) تخیلیا صرفا،

 $B(4-i) \cdot A(2i)$ في المستوي المركب نعتبر النقطتين (A(2i)عين ثم إنشئ مجموعة النقط M(z) في كل حالة

 $|z-2i| = |z-4+i| (2 \cdot |z-2i| = 4(1))$

 $z = 2i + 2e^{i\theta} (4 \cdot \arg(z - 2i)) = \frac{\pi}{2} [2\pi] (3)$

lpha عدد حقیقی غیر معدوم lpha

عين طويلة وعمدة العدد z وذلك حسب قيم lpha في كل $z = \alpha i (2 \cdot z = \alpha (1 : Z = \alpha (1 + \alpha i))$ حالة من الحالات التالية

 $z = \alpha + \alpha \sqrt{3}i$ (5 · $z = \alpha - \alpha i$ (4 · $z = \alpha + \alpha i$ (3)

 $z = \alpha \sqrt{3} - \alpha i (8 \cdot z = \alpha \sqrt{3} + \alpha i (7 \cdot z = \alpha - \alpha \sqrt{3} i (6))$

(1)... $z^2 - 2iz = 0$: المعادلة التالية (1 \mathbb{C}

2) نسمى B، A، O و C صور حلول المعادلة (1)في $(o,ec{\mathrm{u}},ec{\mathrm{v}})$ مستوي منسوب إلى معلم متعامد ومتجانس

أ) أثبت أن المثلث ABC متقايس الأضلاع.

ب) أكتب معادلة ديكارتية للدائرة المحيطة بالمثلث ABC

جـ)عين لاحقة النقطة Dحتى يكون الرباعي ABCD معين

 $|\mathbf{z}_1| = |\mathbf{z}_2| = 1$: عددان مركبان حيث \mathbf{z}_2 عددان مركبان حيث

 $L=\frac{z_{_1}+z_{_2}}{z_{_1}-z_{_2}}$, $K=\frac{z_{_1}+z_{_2}}{1+z_{_1}.z_{_2}}$ المركبين المركبين المركبين

 $\overline{\mathrm{L}}$ اُحسب کلا من $\overline{\mathrm{K}}$ و $\overline{\mathrm{L}}$.

(2)استنتج أن X حقيقي وأن L تخيلي صرف نعتبر في المجموعة $\mathbb C$ المعادلة (E)ات المجهول (E)

 $2z^2 - \left| 1 + (2 + \sqrt{3})i \right| z - \sqrt{3} + i = 0....(E)$

أ- تحقق أن العدد المركب $z_1 = i$ حلا للمعادلة (E).

 $(Q\vec{u};\vec{v})$ المستوي المركب مزود بمعلم متعامد ومتجانس ((2

. $z_3 = e^{\frac{-3}{3}}$ و z_2 ، z_1 لتكن النقط B ، A و C الني لواحقها $_{
m C}$ ا -بيّن أن النقطتين $_{
m O}$ و $_{
m C}$ تنتميان إلى دائرة مركزها OBC استنتج نوع المثلث، $(\overrightarrow{BO};\overrightarrow{BC})$ استنتج نوع المثلث

 $\frac{z^{-}z_{2}}{z^{-}z_{1}}$ \in \mathbb{R}^{-} بحیث: M(z) النقط بخموعة النقط

07 أجب بصحيح أوخطأ مع التبرير في كل حالة:

-1الشكل الأسي للعدد المركب $-\sqrt{3}+i$ هو أ $-\frac{1}{6}$

 $4(\cos\frac{\pi}{4}-i\sin\frac{\pi}{4})$ هو $(\sqrt{2}-i\sqrt{2})^2$ الشكل المثلثي للعدد

المعادلة i=0 المعادلة i=0 المعادلة i=0

 $4z = -\sqrt{2} + \sqrt{6} + i\sqrt{2} - \sqrt{6}$ هو $\mathbb C$ هي المجموعة $\mathbb C$

 $(Q, \vec{u}; \vec{v})$ المستوي المركب مزود بمعلم متعامد ومتجانس

M(z) النقط B(-2)، A(4i) مجموعة النقط

(AB) من المستوي بحيث: |z-4i|=|z+2| هي المستقيم

المستوي المركب مزود بمعلم متعامد ومتجانس $(Q, ec{u}, ec{v})$ لتكن الأعداد المركبة $Z_{\rm A}$ ، $Z_{\rm B}$ و المعرفة كمايلي:

1)مثل النقط C، B، A.

2) تحقق أن المثلث OAB قائم في O ومتساوي الساقين. استنتج نوع الرباعي OACB.

كأكتب z_{c} على الشكل الجبري ثم على الشكل الأسى z_{c}

tan $\frac{\pi}{12}$

 $Z_E = \frac{Z_A}{Z_B}$ ، $4Z_D = Z_A.Z_B$ النعتبر الأعداد المركبة

أ) أكتب كلا من \mathbf{Z}_{D} و على الشكل الأسي

ب)مثل النقطنين D و ${
m E}$ ثم بين ان D، O و ${
m B}$

 $\alpha = \frac{\sqrt{3}-1}{2} - i \frac{\sqrt{3}+1}{2}$: (19) ليكن العدد المركب

المثلثي. α^2 ما أكتب α^2 على الشكل المثلثي. المثلثي الطويلة و عمدة لعدد α .

 $\cos(\frac{\pi}{12})$ ، $\sin(\frac{\pi}{12})$ من (2

 $\alpha^{12k} \in \mathbb{R}$: وبين أن α^{1432} و α^{2012} أحسب كلا من α^{2012} 4) المستوي المنسوب إلى معلم متعامد ومتجانس.

 $|z| = |\alpha(z-1)|$ التي تحقق: $|\alpha(z-1)| = |\alpha(z-1)|$

 $z^2 - 6z + 18 = 0$: حل في $\mathbb C$ المعادالة التالية (1 $\mathbb C$

2-أ) أكتب العدد المركب: $z_1 = 3 - 3i$ على الشكل الأسي ب)أحسب طويلة العدد z_3 وعمدة له حيث:

اليكن كثير الحدود $_{
m P}$ للمتغير المركب $_{
m Z}$ المعرف $_{
m Z}$ $\tan\frac{\pi}{12}$ ثم اُستنتج $z_1 \times z_3 = 6(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12})$ $p(z) = z^4 - 2\sqrt{3}z^3 + 8z^2 - 8\sqrt{3}z + 16$: $2\sqrt{3}z^3 + 8z^2 - 8\sqrt{3}z + 16$ 3) نعتبرفي المستوي المزود بمعلم متعامد ومتجانس النقط p(z) = p(z) فإن: (أ) عدد مركب عدد من أجل كل عدد مركب . $p(\sqrt{3}+i)=p(-2i)=0$: ب)تحقق أن أ)عين قيم العدد الحقيقي lpha حتى تقبل الجملة المثقلة أستنتج الجذرين الآخرين لـ (p(z $(O;\vec{u};\vec{v})$ المستوي المنسوب الى معلم متعامد ومتجانس ($(D;\vec{u};\vec{v})$) \mathbb{R}^* المجموعة النقط G عندما يرسم المجموعة نعتبر النقط: D،C،B، A التي لواحقها: MA - MB + MC = 4 : M(z) عين مجموعة النقط $Z_D = Z_C \cdot Z_C = -2i \cdot Z_B = Z_A \cdot Z_A = i + \sqrt{3}$ أ) مثل النقط: A · B · C · D في المستوي المركب ب)اثبت ان النقط A ، B، C،D تنتمي الي نفس الدائرة $z^2 - 2(1 + \sqrt{3})z + 5 + 2\sqrt{3} = 0$ $\therefore z^2 - 2z + 5 = 0$ O لتكن E نظيرة B بالنسبة الى (3 $(Q\vec{u};\vec{v})$ المستوي المركب مزود بمعلم متعامد ومتجانس $(Q\vec{u};\vec{v})$ بين ان $\frac{Z_{A}-Z_{C}}{z_{A}-z_{C}}=e^{-i\frac{\pi}{3}}$ ، أعط تفسيرا هند سيا للمساوة. نعتبر النقط B B C D و D صور الأعداد المركبة: انترتیب 1 - 2i + 3 + 1 و 1 - 3 + 1 على الترتیب 1 - 2i $(z-2)(z^2-2\sqrt{2}z+4)=0$ المعادلة: \mathbb{C} المعادلة: 14 $\operatorname{Im}(z_1) \prec 0$ و $z_1 \in \mathbb{R}$ و z_2 و z_2 و z_1 و z_2 على الشكل ألأسي (2-أ) أكتب كلا من z_1 ثم z_2 على الشكل ألأسي ب ـ أكتب معادلة للدائرة (γ) المحيطة بالمثلث ABC . $\sin \frac{3\pi}{2}$ ب)استنتج القيمة المضبوطة لكل من $\frac{3\pi}{2}$ cos. ا أنشئ (γ) والنقط (β) و (β) و المعلم المعطى -12 المستوي المركب مزود بمعلم متعامد ومتجانس $(Q, \vec{u}; \vec{v})$ المستوي المركب مزود بمعلم متعامد ومتجانس $(z-2i)(z^2-2z+2)=0$ المعادلة: \mathbb{C} المعادلة: $z_{\rm A} = \sqrt{6} - \sqrt{2}$ التي لواحقها B ، A لتكن النقط $\mathbf{z}_{\mathrm{A}} = \mathbf{1} + \mathbf{i}$ لنكن النقطتين \mathbf{B} ، \mathbf{A} لواحقها على الترتيب (2 $z_{C} = -\sqrt{2}(1-i)$ $z_{B} = -\sqrt{2}(1+i)$ $\frac{Z_{\mathrm{A}}-Z_{\mathrm{B}}}{Z_{\mathrm{A}}}$ أ) أعط تفسير ا هندسيا لطويلة و عمدة العدد أ)لتكن المجموعة (E) مجموعة النقط (M(z) بحيث يكون (E) تخيلي صرّف، ثم بين أن $B \in (E)$ وحدّدالمجموعة z'ب) ما طبيعة المثلث ABC ؟ برر جوابك. ب) لتكن المجموعة (F) مجموعة النقط (M(z) بحيث $z^2 - 2z + 5 = 0$: المعادلة \mathbb{C} حل في \mathbb{C} المعادلة

 $C(1+i) \cdot B(z_1) \cdot A(z_1)$

أ ـ ما هي طبيعة المثلث ABC ؟

G مرجحا $\{(A,1);(B,-1);(C,\alpha)\}$

: 111 حل في $\mathbb C$ ، كلا من المعادلتين $\mathbb C$

 $_{\rm C}$ ج ـ أثبت أن النقطة $_{\rm D}$ تنتمي إلى الدائرة ($_{\rm C}$).

 $z \neq z_A$ نضع : $z' = \frac{z - 2i}{z - 1 - i}$: و

|z| = |z| -يكون : |z| = |z| - حدّد المجموعة

 $\boldsymbol{z}_{_{\boldsymbol{A}}}=2+\boldsymbol{z}_{_{\boldsymbol{I}}}$, $\boldsymbol{z}_{_{\boldsymbol{B}}}=-3$, $\boldsymbol{z}_{_{\boldsymbol{I}}}=1-2i$

 $\cdot G$ أ) احسب $z_{
m G}$ لاحقة النقطة

 $Z = \frac{Z_I - Z_A}{2}$: أ)اكتب على الشكل الجبري العدد

ب)اكتبZ على الشكل الأسي،ثم استنتج نوع المثلث IAB

 $\overrightarrow{AC} = 2\overrightarrow{AI}$:حسب (C لاحقة النقطة Z_C بحيث (جـــ)

 $\{(A;1),(B;-1),(C;1)\}$ مرجح الجملة G تكن G مرجح

ب) عين (Γ_1) مجموعة النقط M(z) من المستوي

 $2\|\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC}\| = \|\overrightarrow{MA} + \overrightarrow{MC}\|$ حیث:

المستوي منسوب إلى معلم متعامد ومتجانس (Q, \vec{u}, \vec{v}) المستوي منسوب

 $P(z) = |z|^2 + 4 i z - 5 - 4 i$

ين مجموعة النقط M(x;y)ذات اللاحقة z بحيث:

أ) يكون P(z) حقيقيا ، ب) يكون P(z) تخيليا صرفا.

P(z) = 1 حيث z المعادلة ذات المجهول (2

 $Im(z_1) \prec 0$ نرمز ب z_2 و z_2 لحلي هذه المعادلة حيث

عين لاحقة النقطة C ثم لاحقة مركز ثقل المثلث ABC.

 $z = 2\cos^2(\alpha) + i\sin(2\alpha)$ نعتبر العدد المركب 17

 α من المستوي عندما يتغيّر M(z) من مجموعة النقط

 Z_2 نعتبر النقطتين A و B صورتي Z_1 و Z_2 على

الترتيب، C نظيرة A بالنسبة إلى O.

 α المجال lpha المجال lpha

العدد α ، طويلة و عمدة العدد α .

2 - المستوي منسوب إلى معلم متعامد ومتجانس.

عين (Γ_2) مجموعة النقط M(z) من المستوي

 $\|\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC}\| = 4\sqrt{5}$ حيث:

2) المستوي المركب المنسوب إلى معلم متعامد ومتجانس

لتكن النقط B ، I و A ذوات اللاحقات: