2012/02/26 3 رياضيات / 3 ساعات ثانوية محمد بلعباس الحامة – سطيف

الإختبار الثاني في مادة العلوم الفيزيائية

التمرين الأول: (4 نقاط)

لدراسة سرعة تشكل شوارد المغنيزيوم نجري تفاعل لمحلول لحمض كلور الماء مع معدن المغنيزيوم فينتج غاز ثنائي الهيدروجين وتتشكل شوارد $Mg^{2+}_{(aq)}$ وفق المعادلة :

$$Mg_{(s)} + 2H_3O_{(aq)}^{-+} = Mg_{(aq)}^{2+} + H_{2(g)} + 2H_2O_{(l)}$$

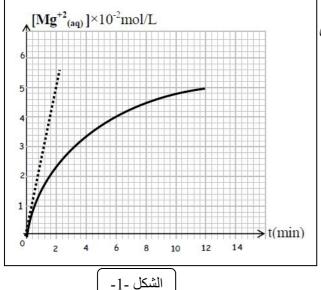
عند اللحظة t=0 ندخل t=0 من المغنيزيوم الصلب في حجم V=30mL من محلول حمض كلور الماء تركيزه $C=0.10\,mol\,/L$.

الداخلتين في التفاعل Ox/Red) الداخلتين في التفاعل مع كتابة المعادلتين النصفيتين . ب هل التفاعل الحادث ستوكيوميتري ؟

- ج) أنجز جدول تقدم التفاعل ، وأستنتج المتفاعل المحدّ.
 - . استنتج ترکیز شاردهٔ $Mg^{2+}_{(aq)}$ عند نهایهٔ التفاعل (د
- 2 / بمتابعة تطور تركيز شاردة $H_3O_{(aq)}^+$ خلال الزمن واستنتاجا لتركيز المولي لشاردة $Mg_{(aq)}^{2+}$ تحصلنا على البيان الذي يمثل تغيرات $Mg_{(aq)}^{2+}$ بدلالة الزمن والموضح في الشكل $Mg_{(aq)}^{2+}$

أ - هل ينتهي التفاعل عند $t = 12 \, \text{min}$

- ب عرّف زمن نصف التفاعل وأحسب قيمته .
- $t = 2.4 \, \text{min}$ عند اللحظة التواعلي عند اللحظة $t = 2.4 \, \text{min}$
- . t=0 عند اللحظة $Mg^{2+}_{(aq)}$ عند اللحظة السرعة الحجمية الشكل البيان استنتج السرعة الحجمية المحمد ا


V=30mL هـ – أرسم الشكل التقريبي للمنحني إذا وضعنا في البداية 1.0gمن المغنزيوم الصلب في حجم من محلول حمض كلور الماء تركيزه $C=0.30\,mol\,/L$. ماهو العامل الحركي الذي أثر على سرعة التفاعل في هذه الحالة .

$$Mg = 24g / mol$$
: يعطى

التمرين الثاني: (4 نقاط)

يعتبر الطب إحدى المجالات الرئيسية التي عرفت تطبيقات عدة للأنشطة الإشعاعية ، ويستعمل في هذا المجال عدد من العناصر المشعة لتشخيص الأمراض ومعالجتها . ومن بين هذه العناصر الصوديوم ^{24}Na الذي يمكن من تتبع مجرى الدم في الجسم .

. $^{24}_{12}Mg$ إشعاعية النشاط وينتج عن تفككها نواة المغنزيوم $^{24}_{11}Na$ إلى أو المعاع وحدد طبيعة هذا الإشعاع .

 λ ين النشاط الإشعاعي λ . أحسب ثابت النشاط الإشعاعي λ . فقد شخص إثر حادثة سير ، حجما من الدم . لتحديد حجم الدم المفقود نحقن الشخص المصاب عند . $C_0=10^{-3}~mol/L$. وقد شخص بركيزه $V_0=5~mL$ ، بحجم $V_0=5~mL$ ، بحجم المسوديوم 24 تركيزه . وقد شخص المساط الم

أ- أحسب n_0 كمية مادة الصوديوم 24 التي تم حقنها .

ب- أكتب قانون التناقص الإشعاعي .

 $t_1 = 3h$ عند اللحظة n_1 كمية مادة الصوديوم 24 التي تبقى في دم الشخص المصاب عند اللحظة

 $t_1 = 3h$ أحسب نشاط هذه العينة عند اللحظة

 $(N_A = 6,02.10^{23} \, mol^{-1})$ عدد أفوقادرو

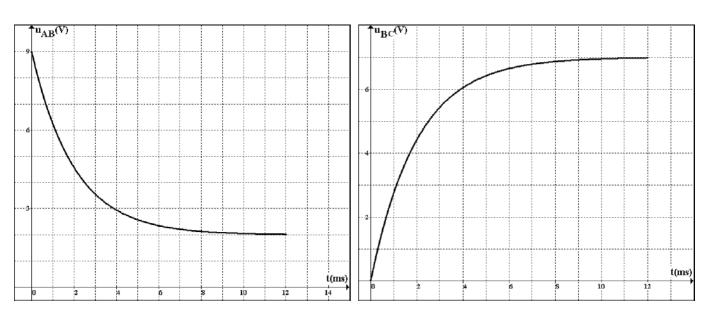
هـ عند اللحظة $t_1=3h$ ، أعطى تحليل الحجم $V_2=2\,mL$ من الدم المأخوذ من جسم الشخص المصاب كمية المادة $n_2=2,1.10^{-9}\,mol$ ، من الصوديوم $n_2=2,1.10^{-9}\,mol$

الدم وأن على V_p للدم المفقود باعتبار أن جسم الإنسان يحتوي على U_p من الدم وأن الصوديوم 24 موزع فيه بكمية منتظمة .

التمرين الثالث (04)نقاط):

دارة كهربائية تحتوي على التسلسل:

E مولد لتوتر ثابت قوته المحركة الكهربائية -


 $r = 20\Omega$ وشيعة ذاتيتها لومقاومتها الداخلية التيتها و

- قاطعة K

R - ناقل أومى مقاومته

بدلالة الزمن . فتحصلنا u_{AB} و u_{AB} بواسطة راسم إهتزاز مهبطي ، تمكنا من متابعة تطور التوترين على البيانين الشكل (1) و الشكل (2) .

نعتبر لحظة غلق القاطعة مبدءا للأزمنة .

الشكل 1

1- بين على الشكل كيفية توصيل راسم الاهتزاز المهبطي لمشاهدة البيانين السابقين. 2- ماهو الجهاز الذي يمكنه تعويض راسم الاهتزاز المهبطي لمشاهدة البيانين السابقين.

- 3- ماذا يمثل كل بيان ؟
- E علمو لد قيمة القوة المحركة الكهر بائية للمو لد 4
 - L أحسب قيمة R واستنتج قيمة الذاتية L
- t=0.004s : ثم أحسبها عند اللحظة: i(t) ، ثم أحسبها عند اللحظة أحسبها عند الحرفية لشدة التيار
 - t = 0.004s : أحسب قيمة الطاقة المخزنة من طرف الوشيعة عند اللحظة:

التمرين الرابع (04نقاط):

 $25^{\circ}C$ كل المحاليل درجة حرارتها

 $C_A=10^{-2}\ mol\ /\ L$ تر كيزه المولي CH_3COOH تركيزه المولي (S_A) لحمض الإيثانويك وله PH=3.4 .

1- أعط تعريف الحمض حسب برونشتد.

2-هل حمض الإيثانويك ضعيف؟ برر إجابتك بحساب.

3- أكتب معادلة تفاعل حمض الإيثانويك مع الماء ؟

. Ka عبارة ثابت الحموضة Ka للثنائية أيون الإيثانوات / الإيثانويك

II- لدينا محلولان لأساسين ضعيفين.

. NH_3 (النشادر) للأمونياك (النشادر) محلول

محلول (S_{B2}) لمثیل أمین (S_{B2})

- هل الأمونياك أساس أضعف من الميثيل أمين ؟ برر إجابتك باستخدام المعطيات أدناه .

المحلول $V_{B2}=20\,mL$ من المحلول (S_A) المحلول $V_A=10\,mL$ من المحلول -III من $V_{B2}=10\,mL$ من المحلول . $C_{B2}=1.5\times 10^{-2}\,mol\,/L$ من المحلول (S_{B2})

1- أحسب كمية مادة حمض الإيثانويك وكمية مادة ميثيل أمين قبل المزج.

2- أكتب المعادلة المنمذجة للتفاعل الحادث بين أنه يمكننا إعتبار هذا التفاعل تاما ب

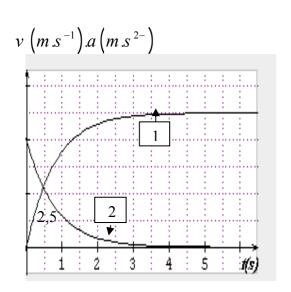
3- أحسب كمية المادة لكل نوع كيميائي بعد حدوث التفاعل واستنتج تراكيزها المولية في المزيج .

. المحلول
$$pH$$
 المحلول ، $CH_3NH_3^+_{(aq)}/CH_3NH_{2(aq)}$ ، أحسب pH المحلول . $CH_3NH_{2(aq)}$ ، أحسب pH المحلول . $CH_3NH_{2(aq)}$.

 $pKa_{1}(CH_{3}COOH / CH_{3}COO^{-})$ = 4.7. $pKa_{2}(NH_{4}^{+} / NH_{3})$ = 9.2. $pKa_{3}(CH_{3}NH_{3}^{+} / CH_{3}NH_{2})$ = 10.7

التمرين الخامس (04نقاط):

يسقط مظلي كتلته مع تجهيزه m=100 سقوطا شاقوليا بدءا من نقطة O بالنسبة لمعلم أرضي دون سرعة ابتدائية يخضع أثناء سقوطه إلى قوة مقاومة الهواء عبارتها من الشكل $f=k\nu$ (تهمل دافعة ارخميدس)


يمثل البيان المقابل تغيرات كل من سرعة و تسارع مركز عطالة المظلي بدلالة الزمن .

1- بتطبيق القانون الثاني لنيوتن بين أن المعادلة التفاضلية لحركة المظلى هي من الشكل

$$\frac{dv}{dt} = A v + B$$

حيث: A,B ثابتان يطلب تعيين عبارتيهما .

2- أنسب كل منحنى بياني لمقداره الفيزيائي الموافق ؟ علل.

3-عين بيانيا قيمة كلا من:

* g: شدة مجال الجاذبية الأرضية .

 v_L : السرعة الحدية للمظلى .

 $\left(\frac{k}{m}\right)$ المقدار الحركة السابقة بقيمة المقدار -4

- حدد وحدة هذا المقدار واحسب قيمته باستغلال البيان k- احسب قيمة الثابت k

a = f(v): مثل تغيرات تسارع المظلي بدلالة السرعة -6

v = f(t) توقع شكل مخطط السرعة

عند اهمال دافعة أرخميدس ومقاومة الهواء علل.

بالتوفيق

أستاذ المادة: جوادة أحمد لخضر