المستوى: نهائي علوم تجريبية

المدة: ساعتان

التاريخ: فيفري 2012

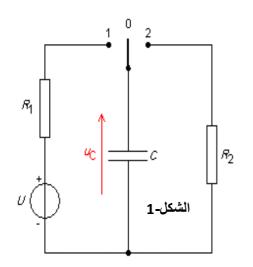
اختبار الثلاثي الثاني في مادة

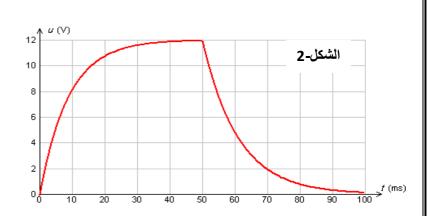
العلوم الفيزيائية

ثانوية كاتب ياسين

مدينة على منجلى - قسنطينة

 $C_1 = 1,00 imes 10^{-2} mol\ /L$ تركيزه المولي HCOOH المحلول لحمض النمل تركيزه المولي أ- قيمة الـ pH المحلول لحمض النمل المحلول المحلو


$$pH_1 = 2.9$$


- 1- أكتب معادلة تفاعل حمض النمل مع الماء ؟
- 2- حدد الثنائية (حمض-أساس) الخاصة بهذا الحمض المساهمة في هذا التفاعل؟
 - 3- حدد نسبة تقدم تفاعل حمض النمل مع الماء؟
 - 4- حدد قيمة ثابت الحموضة $\,K_{\,a}\,$ لهذا المحلول الحمضي؟
- $pH_2=3,5$ بـ مُدِدَ المحلول السابق لحمض النمل عشر مرات و كانت قيمة الـ: $pH_2=3,5$ للمحلول الناتج
 - 1- أوجد نسبة تقدم تفاعل حمض النمل مع الماء في المحلول الناتج ، ماذا تستنتج ؟
 - 2- برهن أن ثابت الحموضة K_a لا يتعلق بالشروط الابتدائية ؟

تمرين (02): لدراسة عملية شحن و تفريغ مكثفة ، يقوم تلميذ بتوصيل العناصر الكهربائية كما هو مبين في الشكل-1 .

حيث وضع القاطعة في الوضع1 لمدة معينة ثم يضعها في الوضع2.

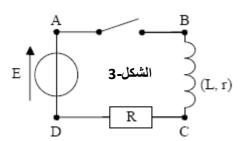
فيتحصل على البيان المسجل في الشكل-2.

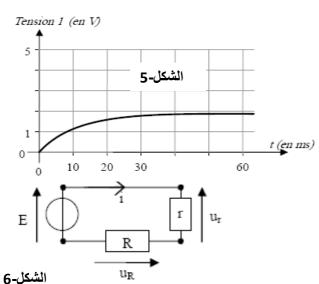
I- دراسة عملية الشحن:

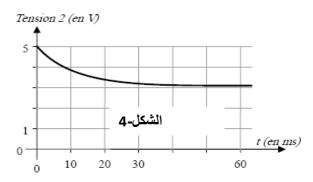
- 1- ما هو التوتر بين طرفي المكثفة عند نهاية الشحن ؟
- 2- أكتب المعادلة التفاضلية التي يخضع لها التوتر بين طرفي المكثفة ؟
- 9- حل المعادلة التفاضلية السابقة من الشكل au $= E \, (1 e^{-rac{\dot{ au}}{ au}})$ ، أوجد عبارة الثابت au ، ثم أحسب قيمته
 - $_{
 m S}\,R_1=40\Omega$ و أحسب قيمة سعة المكثفة إذا علمت أن $_{
 m 1}$

أقلب الصفحة	ص-1-	إسائذة إلمادة
-------------	------	---------------

II- دراسة عملية التفريغ:

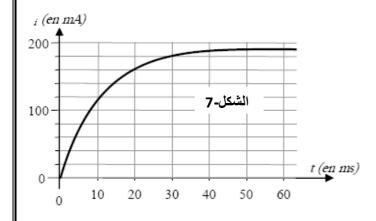

- 1- مثل دارة تغريغ المكثفة و حدد جهة التيار المار في هذه الدارة ؟
- 2- أوجد المعادلة التفاضلية التي يخضع لها التوتر بين طرفي المكثفة ؟
- 3- تحقق أن $Ee^{-rac{t}{ au}}$ هو حل للمعادلة التفاضلية التي وجدتها في السؤال السابق $U_c(t)$
 - R_2 أحسب قيمة المقاومة R_2 ؟


تمرين (03): لدينا وشيعة حقيقية مقاومتها الداخلية r و معامل تحريضها الذاتي L ، لغرض معرفة قيمة كل من r و L نحقق الدارة


. $E=5\!V$ ، $R=10\Omega$ ميث ، عيث الشكل المبينة في الشكل

باستعمال برنامج خاص تحصلنا على:

- . $U_{R}\left(t\,
 ight)$ البيان الممثل لتغيرات التوتر بين طرفي الناقل بدلالة الزمن
- . $U_{b}\left(t
 ight)$ البيان الممثل لتغيرات التوتر بين طرفي الوشيعة بدلالة الزمن
 - اللحظة t=0 توافق لحظة غلق الدارة.



I- تمهید :

- 1- كيف تتصرف الوشيعة عندما تثبت المقادير الفيزيائية ؟
 - 2- لنعتبر الدارة الموجودة في الشكل-6.
 - أ- عبر عن شدة التيار i بدلالة R ، r، E ؟
 - $^\circ$ R و r، E بدلالة U_r و بارة بدلالة
 - II تحديد قيمة المقاومة الداخلية للوشيعة:
- $^{f t}$ و البيان الموافق للتوتر $U_{\scriptscriptstyle R}(t)$ و البيان الموافق للتوتر $U_{\scriptscriptstyle B}(t)$
- ية العلاقة ؛ $U_{_b}$ ، $U_{_R}$ ، $U_{_R}$ ، و العلاقة ؛ $U_{_b}$ ، $U_{_R}$ ، و العلاقة ؛
 - $^{\circ}$ ا $^{\circ}$ ا $^{\circ}$ هي القيمة الحدية $^{\circ}$ ا
 - 3- ب/ اعتمادا على التمهيد أستنتج قيمة r ؟
 - III تحديد قيمة التحريض الذاتي للوشيعة: انطلاقا من

ا لبيان $U_{R}(t)$ نرسم البيان $U_{R}(t)$ الشكل-7

- ب ما هي القيمة الحدية لشدة التيار $I_{
 m max}$ ؟
 - 2- أوجد بيانيا قيمة ثابت الزمن τ للدارة ؟
 - 3- أستنتج قيمة L ؟

بالنوفيق والنجاح

ص-2-

إسائذة إلهادة

2012	السنة الدراسية: 2011 -	الثلاثي الثاني	تصحيح اختبار	م تجريبية	المستوى: نهائي علو
الننقيط	الأجابة				
0,5	تمرین (01) : (6,5 نقاط) 1 د کتابة معادلة تفاعل حمض النمل مع الماء: 1 1 1 1 1 1 1 1 1 1				
0,25		НСООН / НСО		(1)	′
0,23	`		لماء:	فاعل حمض النمل مع ا	3- تحديد نسبة التقدم لتف
	معادلة التحول الحالة	$HCOOH_{(l)}$	$+H_{2}O_{(l)}=$	$HCOO_{(aq)}^-$	$+ H_3O_{(aq)}^+$
0,5	الحالة الابتدائية	$n_0(HCOOH)$	بزيادة	0	كمية قليلة
	الحالة النهائية	$n_0 - X_{f1}$	بزيادة	X_{f1}	X_{f1}
0,25	$pH_1 = 2,9$	$\Theta \Rightarrow \left[H_{3}O^{+} \right]_{1} =$	$=X_{f1}$		
	$n_0 = X_{\text{max}}$	$C_1 \Rightarrow C_1 = \frac{X_{\text{max}}}{V}$	<u>1</u>		
01	$\tau_1 = \frac{X_{f1}}{X_{\text{max}}}$	$\frac{1}{1} = \frac{\left[H_{3}O^{+}\right]_{1}}{C_{1}} =$	$= \frac{10^{-pH_1}}{C_1} = \frac{1}{12}$	$\frac{0^{-2,9}}{\langle 10^{-2} \rangle} = 0,126$	$6 \simeq 0.13$
	$\frac{9}{6}\tau_1=0,1$	$3 \times 100 = 13 \%$	•		
	Гисос) -] [11 O +]	•		4- تحديد ثابت الحموضة
01	$K_{a1} = \frac{\left[HCOO^{-}\right]_{f} \left[H_{3}O^{+}\right]_{f}}{\left[HCOOH\right]_{f}} = \frac{X_{f1}^{2}}{C_{1} - X_{f1}} = \frac{\left(10^{-2,9}\right)^{2}}{1 \times 10^{-2} - 10^{-2,9}} = 1,81 \times 10^{-4}$				
	[11		-		ب-1-أ/ تحديد نسبة تقدم
0,25	$pH_{2} = 3.5$	$\Rightarrow \left[H_{3}O^{+} \right]_{2} =$	$X_{f,2}$		
·		$\Rightarrow C_2 = \frac{X_{\text{max}}}{V}$	v		
		<i>V</i>			
01	$\tau_{21} = \frac{X_{f2}}{Y_{f2}}$	$\frac{1}{C} = \frac{\left[H_{3}O^{+}\right]_{2}}{C_{3}} =$	$=\frac{10^{-pH_2}}{G}=\frac{1}{1}$	$\frac{10^{-3.5}}{10^{-3}} = 0.31$	$6 \approx 0,32$
	max	C_2 C_2 $2 \times 100 = 32 \%$	C_2 1	×10 ³	
	, , ,	, ,			ملاحظة: المحلول خفف
0,5	C	$C_2 = \frac{C_1}{10} = \frac{1 \times 1}{1}$	$\frac{10^{-2}}{0} = 1 \times 1$	$0^{-3} m ol / L$	
		10 1	•		ب-1- ب/ الاستنتاج : نس ب – 2 – أ/ إيجاد ثار
		ص-3-		ي منجلي - قسنطينة	ثانوية كاتب ياسين – عا

الننقيط	الإجابة
01	$K_{a2} = \frac{\left[HCOO^{-}\right]_{f} \left[H_{3}O^{+}\right]_{f}}{\left[HCOOH\right]_{f}} = \frac{X_{f2}^{2}}{C_{2} - X_{f2}} = \frac{\left(10^{-3.5}\right)^{2}}{1 \times 10^{-3} - 10^{-3.5}} = 1,46 \times 10^{-4}$
	$K_{a2} = 1,46 \times 10^{-4} \approx 1,5 \times 10^{-4}$
0,25	pH : ب K_a النتيجة K_a لا يتعلق بالشروط الابتدائية و الفرق الملاحظ راجع لعدم دقة أجهزة قياس ال K_a . فيلزمنا على الأقل رقمين بعد الفاصلة للتعبير عن قيمة ال M حتى تعطينا قيم دقيقة لـ M .
	تمرین(02): (6 نقاط)
	I - دراسة عملية الشحن:
0.25	ا 1- التوتر بين طرفي المكثفة عند نهاية الشحن: $II = F = 1$
	$U_{C}=E=12 Volts$
	2- كتابة المعادلة التفاضلية التي يخضع لها التوتر بين طرفي المكثفة: بتطبيق قانون التوترات $da=dU$, (t)
0,5	$U_{C}(t) + U_{R_{1}} = E \Rightarrow U_{C}(t) + R_{1}i = E; i = \frac{dq}{dt} \Rightarrow i = C.\frac{dU_{C}(t)}{dt}$
0,5	$U_{C}(t) + R_{1}C \cdot \frac{dU_{C}(t)}{dt} = E \Rightarrow \frac{dU_{C}(t)}{dt} + \frac{1}{R_{1}C}U_{C}(t) = \frac{E}{R_{1}C}$
	و هي معادلة تفاضلية من الدرجة الأولى بطرف ثاني. 3 – أ/إيجاد عبارة الثابت T :
0,25	$U_{C}(t) = E\left(1 - e^{-\frac{t}{\tau}}\right) \Rightarrow \frac{dU_{C}(t)}{dt} = \frac{E}{\tau}e^{-\frac{t}{\tau}}$
0,25	$\frac{dU_C(t)}{dt} + \frac{1}{R_1C}U_C(t) = \frac{E}{R_1C} \Rightarrow \frac{E}{\tau}e^{-\frac{t}{\tau}} + \frac{1}{R_1C}E\left(1 - e^{-\frac{t}{\tau}}\right) = \frac{E}{R_1C}$
0,5	$\frac{E}{\tau}e^{-\frac{t}{\tau}} + \frac{E}{R_1C} - \frac{E}{R_1C}e^{-\frac{t}{\tau}} = \frac{E}{R_1C} \Rightarrow \frac{E}{\tau}e^{-\frac{t}{\tau}} = \frac{E}{R_1C}e^{-\frac{t}{\tau}} \Rightarrow \tau = R_1C$
	$U_C=f\left(t ight)$ إيجاد قيمة $ au$ بيانيا : بتطبيق طريقة المماس عند المبدأ للمنحي البياني $ au$
0,5	au=10ms
	$\iota = 1077\iota$ 3 - حساب قیمة سعة المكثفة :
0,5	$\tau = R_1 C \Rightarrow C = \frac{\tau}{R_1} = \frac{10 \times 10^{-3}}{40} = 2,5 \times 10^{-4} F$
	ثانوية كاتب ياسين – علي منجلي - قسنطينة ص-4-

الننقيط	الإجابة		
0.25		ح ۵ قم التدار	II- دراسة عملية التفريغ: 1- تمثيل دارة التفريغ مع تحديد.
		المكثفة :	2- إيجاد المعادلة التفاضلية التي يخضع لها التوتر بين طرفي ا
0,25	$U_{C}(t)+U_{I}$	$R_2 = 0 \Longrightarrow U_C(t)$	$) + R_2 . i = 0$
0,25	$i = \frac{dq}{dt} \Longrightarrow i$	$T = C \frac{dU_C(t)}{dt} =$	$\Rightarrow U_C(t) + R_2 C \frac{dU_C(t)}{dt} = 0$
0,5	$\frac{dU_{C}(t)}{dt}$ +	$\frac{1}{R_2C}U_C(t) = 0$	
			و هي معادلة تفاضلية من الدرجة الأولى بدون طرف ثاني. 3- التحقق من حل المعادلة التفاضلية:
	$U_{ _C}$ ($(t) = E e^{-\frac{t}{\tau}};$	$\tau = R_2 C$
0,25	$\frac{dU_{0}}{dU_{0}}$	$\frac{C(t)}{T} = -\frac{E}{T}$	$-e^{-\frac{t}{\tau}} = -\frac{E}{R_{2}C}e^{-\frac{t}{\tau}}$
	d	t t $ au$	$R_{2}C$
0,25	$-\frac{E}{R_{2}C}$	$e^{-\frac{t}{\tau}} + \frac{1}{R_2C}$	$-Ee^{-rac{t}{ au}}=0$ يالتعويض في المعادلة رقم (2) :
			إذن $Ee^{-rac{t}{ au}}$ هو حل للمعادلة التفاضلية السابقة
0,5			$ au=10ms$ - حساب قیمة R_2 : بیاتیا - 4
0,5	au=I	$R_2C \implies R_2 = \frac{\tau}{C}$	$\frac{7}{C} = \frac{10 \times 10^{-3}}{2,5 \times 10^{-4}} = 40\Omega$
			تمرين(03): (7,5 نقطة)
0,5	ئل أومي مقاومته r.	رف الوشيعة في الدارة كناق	I - تمهيد : 1- عندما تثبت المقادير الفيزيائية (شدة التيار و التوتر) تتصر 2- أ/ عبارة شدة التيار : بتطبيق قانون أوم
0,5		E = (R + r)i	$i \Rightarrow i = \frac{E}{(R+r)}$
			: ${U}_{r}$ عبارة ${U}_{R}$: -2
0,5		$U_R = R.i =$	$= R \cdot \left(\frac{E}{R + r} \right)$
0,5			$r \cdot \left(\frac{E}{R + r}\right)$
		ص-5-	ثانوية كاتب ياسين – علي منجلي - قسنطينة

الننقيط	الجابة	
	II- تحديد قيمة المقاومة الداخلية للوشيعة :	
0,5	1- أ/ البيان الموافق للتوتر $U_{R}\left(t ight.)$: هو البيان الموجود في الشكل-5	
0,5	4- ب/ البيان الموافق للتوتر $U_{b}\left(t ight)$. هو البيان الموجود في الشكل-	
	. بتطبیق قانون التوترات: U_{b} و U_{R} ؛ بتطبیق قانون التوترات: -2	
0,5	$U_b + U_R = E$	
	2- ب/ نعم البيانين يتوافقان مع هذه العلاقة: في النظام الدائم	
0,5	3Volts + 2Volts = 5Volts	
	4- القيمة الحدية U_{r} : باستعمال البيان في الشكل $$ 3- أ/ القيمة الحديد المتعمال البيان في الشكل	
0,5	$U_{r \max} = 3Volts$	
	3- ب/ استنتاج قیمة r :	
0,5	$\frac{U_{b \max}}{U_{R \max}} = \frac{U_{r \max}}{U_{R \max}} = \frac{r \cdot i}{R \cdot i} = \frac{r}{R} = \frac{3}{2} \Rightarrow r = \frac{3}{2}R$	
0,5	$r = \frac{3}{2}R = \frac{3}{2} \times 10 = 15\Omega$	
	III- تحديد قيمة التحريض الذاتي للوشيعة :	
	1- القيمة الحدية لشدة التيار: باستعمال البيان الشكل-7	
0,5	$I_{\rm max} = 200ms$	
	2- إيجاد τ بيانيا : باستعمال البيان الشكل-7 و باستعمال طريقة المماس نجد	
0,5	$ au_{\mathrm{exp}} = 10ms$	
	3- استنتاج قیمة L :	
01	$L = \tau (R + r) = 10 \times 10^{-3} (10 + 15) = 0,25H$	
	ثانوية كاتب ياسين – علي منجلي - قسنطينة ص-6-	