I. نتائج ، خواص و تطبیقات:

1.نتائج:

في كلّ ما يلي ، يرمز a إلى عدد حقيقي:

(a>1) يعنى $(\ln a>0)$ (2. (a>0) يعنى $(\ln a>0)$ (1

(0 < a < 1) يعني $(\ln a < 0)$ (4. (a = 1) يعني $(\ln a = 0)$ (3

 $\ln e = 1$ (8. $\ln 1 = 0$ (7. a > 0 ! $e^{\ln a} = a$ (6. $\ln e^a = a$ (5)

في كلّ ما يلي ، يرمز a و b إلى عدديْن حقيقيّيْن موجبيْن تماما: a > b يعنى $\ln a > \ln b$ (2. a = b يعنى $\ln a = \ln b$ (1

 $\ln\left(\frac{a}{b}\right) = \ln a - \ln b$ (4. $\ln(ab) = \ln a + \ln b \ (3.$

 $\ln\left(\frac{1}{a}\right) = -\ln a$ (5. $. n \in \mathbb{Q} : \ln(a^n) = n \ln a (6.$

ت1: اكتب على أبسط شكل ممكن الأعداد التالية:

$$f(x) = \frac{1 + 2\ln x}{1 - 3\ln x} \cdot 4 \quad f(x) = x + 1 - \ln(x - 2)^2 \cdot 3 \\ \ln\left(\frac{1}{e}\right)^2 - \ln^2\left(\frac{1}{e}\right) \quad (4 \qquad e^{-2\ln 3} \quad (3 \qquad e^{1 + \ln 2} \quad (2 \qquad e^{\ln 5} + e^{-\ln 3}) \cdot (1 + e^{-2\ln 3})$$

 $2 \ln x = \ln(x-4) + \ln(2x)$ المعادلة \mathbb{R} ، المعادلة

 $\ln x + \ln(4-x) \le \ln(2x-1) + \ln 3$ المتراجحة \mathbb{R} ، المتراجحة

 $(\ln x)^2 + 2\ln x - 3 = 0$ المعادلة \mathbb{R} ، المعادلة نحل، في

II.دراسة إشارة بعض العبارات:

في كلّ ما يلي ، ترمز eta ، eta ، eta ، eta إلى أعداد حقيقيّة.

 $a.\alpha \neq 0$ حيث $a.\ln(\alpha x + \beta) + b$ در اسة إشارة العبارة

 $\lim_{x \to +\infty} \ln |-4x + 2| - \ln |2x - 1|$.8 $\lim_{x \to -\infty} \frac{\ln(x^2)}{v}$.7 على مجموعة تعريفها، نبحث $\frac{1}{v}$.7 على مجموعة تعريفها، نبحث عن القيمة التي تعدمها ولتكن x_0 ،ثمّ نُحدّد إشارتها كما في الجدول التالي:

X		\boldsymbol{X}_0	
$a.\ln(\alpha x + \beta) + b$	alpha عكس إشارة	0	alpha نفس إشارة
			**

تطبيق:

 $\ln(-x+1)+2$ (2 ! $\ln(x+2)-1$ درس إشارة كلّ من 1) $\ln(x+2)-1$ $a.b.c \neq 0$ حيث $a(\ln x)^2 + b \ln x + c$ در اسة إشارة العبارة.

لدر اسة إشارة العبارة $a\left(\ln x
ight)^2+b\ln x+c$ على \mathbb{R}^{*+} ، نقوم بما يلي: نضع X التي ، $a.X^2 + b.X + c$ نصبح العبارة ، a.X = Xتعدمها- إنْ وُجدت- ثمّ نستنتج قيم X التي تعدم العبارة ، و في الأخير، نشكّل جدو لا ندرس فيه إشارة العبارة،مستخدمين القواعد المعروفة

تطيبقات:

 $(\ln x)^2 - \ln x + 1$ (2 $(\ln x)^2 + 2\ln x - 3$ (1 : ادرس إشارة $(\ln x)^2 + 2\ln x - 3 > 0$ ت $(\ln x)^2 + 2\ln x - 3 > 0$

III. تحويل بعض عبارات الدوال:

لإشارة كثيرات الحدود من الدرجة الثانية.

ا خان n فردیّا. $\ln(u(x)^n) = n.\ln(u(x))$ (1

ا نوجيّا. الا $u(x)^n$ ، الذا كان $u(x)^n$ ، الدا الد

IV.حساب النهايات:

1 النهايات الشهيرة: $\lim \ln \alpha = +\infty$ $(n \succ 0) = \lim_{\alpha \to +\infty} \frac{\ln \alpha}{\alpha^n} = 0$ $\leftarrow \lim_{\alpha \to +\infty} \frac{\ln \alpha}{\alpha} = 0$ $\lim_{\alpha \to +\infty} \frac{\alpha}{\ln \alpha} = +\infty \quad \longleftarrow \downarrow \qquad \boxed{\lim_{\alpha \to +\infty} \ln \alpha = -\infty}$ $(n \succ 0 \cdot \lim \alpha^n \ln \alpha = 0) \leftarrow \lim \alpha \ln \alpha = 0$ $\left(\lim_{\alpha \to 1} \frac{\ln \alpha}{\alpha - 1} = 1\right) \leftarrow \left[\lim_{\alpha \to 0} \frac{\ln(1 + \alpha)}{\alpha} = 1\right] (5)$

f عند f عند عند الدرس ، في كل حالة ، نهاية الدالة f $f(x) = \frac{\ln(x-1)}{x+3}$. 2 $f(x) = x+1-\ln(x-2)$. 1

2: احسب ، في كل حالة ، النهاية :

 $\lim_{x \to -\infty} \ln \left(\frac{x+1}{x-1} \right) . \mathbf{2} \quad \lim_{x \to 0} \left(-x^2 + 3x + 1 \right) \ln x . \mathbf{1}$

 $\lim_{\stackrel{\succ}{x \to 1}} \left(\frac{x+1}{x-1} \right) . 4 \qquad \lim_{\stackrel{\leftarrow}{x \to -1}} \ln \left(\frac{x+1}{x-1} \right) . 3$

 $\lim_{x \to 0} \frac{\ln(1+3x)}{x} . 6 \quad \lim_{x \to -1} \frac{2x}{x+1} - \ln(x+1) . 5$

V.قانونا الاشتقاق:

اذا كانت u دالة موجبة تماما و قابلة للاشتقاقu

 $\left|\left(\ln\left[u(x)\right]\right)' = \frac{u'(x)}{u(x)}\right|$: فإنّ I فإنّ

*إذا كانت u دالة لا تنعدم و تقبل الاشتقاق

 $\left|\left(\ln\left|u(x)\right|\right)' = \frac{u'(x)}{u(x)}\right|$ غلی مجال ۲، فإنّ : ا

 $D_f =]-\infty, -1[\cup]2, +\infty[$ معرّفة على f:1

 $f(x) = \ln\left(\frac{x+1}{x-2}\right)$ بر $f(x) = \ln\left(\frac{x+1}{x-2}\right)$

 $D_f = \left[0, +\infty\right]$ بـ :2 بالله معرّفة على f

 $f(x) = (\ln x)^2 + 2 \ln x - 3$ ادرس تغیّرات $f(x) = (\ln x)^2 + 2 \ln x - 3$ $:D_f=\mathbb{R}-\{1;2\}$ بـ : $:T_f=\mathbb{R}$ بـ : 3

 $f(x) = \ln \left| \frac{x+1}{x-2} \right|$ ادرس تغیّرات f(x)

من إعداد الأستاذ: محمد جبال