الأقسام: 3 ع ت ₍₃₊₁₎	فرض الثلاثي الأول	ثانوية أحمد الشريف منتوري عين مليلة
	مادة العلوم الفيزيائية	2010/11/ 4

التمرين الاول:

 $(2K^+(aq) + S_2O_8^{2^-}(aq))$ نمزج في اللحظة $V_1 = 0$ حجما $V_2 = 0$ من محلول مائي لبيروكسودي كبريتات البوتاسيوم $V_1 = 0$ تركيزه المولي $V_2 = 0$ من محلول مائي ليود البوتاسيوم $V_2 = 0$ تركيزه المولي $V_2 = 0$ من محلول مائي ليود البوتاسيوم $V_2 = 0$ تركيزه المولى $V_2 = 0$ المتبقية في الوسط التفاعلي في لحظات زمنية مختلفة ، فنحصل على البيان الموضح في الشكل تابع تغيرات كمية مادة $V_2 = 0$ المتبقية في الوسط التفاعلي في لحظات زمنية مختلفة ، فنحصل على البيان الموضح في الشكل $V_2 = 0$ المتبقية في التحول الكيميائي الحاصل هما : $V_2 = 0$ (aq) $V_2 = 0$ (aq) $V_2 = 0$ (aq) $V_2 = 0$ (aq) $V_3 = 0$ (b) التحول الكيميائي الحاصل .

ب/ أنجز جدولا لتقدم التفاعل الحادث.

2- اعتمادا على البيان:

أ- أستنتج التركيز رح لمحلول يود البوتاسيوم

ب- حدد المتفاعل المحد علما أن التفاعل تام

ج- أستنج قيمة التقدم النهائي X_f

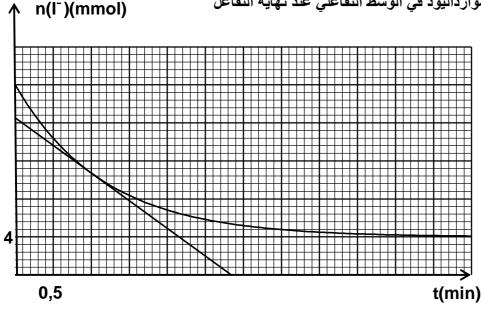
3 -أ- أستنج بيانيا قيمة سرعة اختفاء شوارد اليود في اللحظة علم 1 -

t = 1min للوسط التفاعلي علما أن قيمة السرعة الحجمية للتفاعل في اللحظة V_T للوسط التفاعل ب- أوجد قيمة الحجمية للتفاعل في اللحظة

 $v_{\text{(vol)}} = 9.1 \times 10^{-3} \text{ mol.L}^{-1}.\text{min}^{-1}$

 \mathbf{C}_1 ج- أستنج قيمة الحجم \mathbf{V}_1 لمحلول بيروكسودي كبريتات البوتاسيوم وتركيزه

t_{1/2} التفاعل عرف زمن نصف التفاعل 4


 $n_{1/2}(\Gamma) = \frac{n_0(\Gamma) - n_f(\Gamma)}{2}$

ب- بين أن كمية شارد اليود $n_{1/2}(\Gamma)$ عند $t_{1/2}$ تعطى بالعلاقة التالية :

حيث $n_0(\Gamma)$: هي كمية مادة شوار داليود الابتدائية في الوسط التفاعلي

n_f(Γ) : هي كمية مادة شوار داليود في الوسط التفاعلي عند نهاية التفاعل

ج- أستنج قيمة t_{1/2} بيانيا .

التمرين الثاني:

يستعمل الثوريوم 230 Th لتأريخ المرجان و الترسبات البحرية لأن تركيز الثوريوم على سطح الترسب الموجود في تماس مع ماء البحر يبقى ثابتا ويتناقص حسب العمق داخل الترسب.

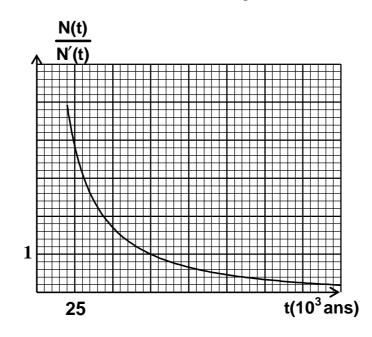
 $_{.b}^{-}$ و $_{.b}^{-}$ و $_{.b}^{-}$ المذاب في ماء البحر ذرات الثوري $_{.b}^{-}$ مع إنبعاث $_{.b}^{-}$ مع البحر في ماء البحر في ما

-أكتب معادلة هذا التحول النووي محددا قيمة كل من x و y -

 $^{226}_{88}$ Ra نواة الثوريوم $^{230}_{90}$ Th نتولد عن تفكك نواة الثوريوم $^{226}_{90}$

أكتب معادلة هذا التفاعل النووي محددا طبيعة الإشعاع المنبعث

الموضح في الشكل $\frac{N(t)}{N'(t)} = f(t)$ الموضح في الشكل (30 برسم المنحنى $\frac{N(t)}{N'(t)} = f(t)$


حيث: N عدد الأنوية الموجودة في العينة في اللحظة t و N عدد الأنوية المتفككة في اللحظة t

$$\frac{\mathbf{N(t)}}{\mathbf{N'(t)}} = \frac{1}{\mathbf{e}^{\lambda t} - 1}$$
: أ/ بين أن

 $^{230}{
m Th}$ النواة الثوريوم $^{230}{
m Th}$ برا اعتمادا على البيان أحسب قيمة زمن نصف العمر $^{10}{
m Cm}$

4/ أخذت من قعر المحيط ، عينة لها شكل أسطواني إرتفاعه h

بين تحليل جزء، كتلة $m_s = 20 \mu g$ من القاعدة العليا لهذه العينة أنه يحتوي على كتلتة $m_s = 20 \mu g$ من الثوريوم 230 وبين تحليل جزء له نفس الكتلة $m_p = 1,2 \mu g$ من الثوريوم 230 أوجد بالسنة عمر الجزء المأخوذ من القاعدة السفلى للعينة.

الأستاذ: قربوعة مختار