المستوى: 3ع تج

المدة : ساعة

التاريخ :2010/11/18

السنة الدراسية: 2011/2010

الفرض الثاني للفصل الأول في العلوم الفيزيائية |

التمرين الاول:

ب/ أنجز جدولا لتقدم التفاعل الحادث.

2- اعتمادا على البيان:

أ- أستنتج التركيز و2 لمحلول يود البوتاسيوم

ب- حدد المتفاعل المحد علما أن التفاعل تام

ج- أستنج قيمة التقدم النهائي X

3 -أ- أستنج بيانيا قيمة سرعة اختفاء شوارد اليود في اللحظة t = 1min

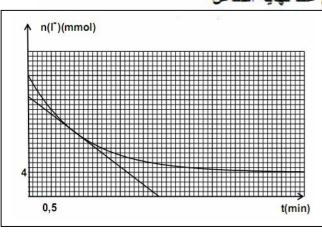
t = 1سام الكلي V_T للوسط التفاعلي علما أن قيمة السرعة الحجمية للتفاعل في اللحظة V_T

ج- أستنج قيمة التقدم النهاني X

3 -أ- أستنج بيانيا قيمة سرعة اختفاء شوارد اليود في اللحظة t = 1min

t = 1min ب- أوجد قيمة الحجم الكلي V_{τ} للوسط التفاعلي علما أن قيمة السرعة الحجمية للتفاعل في اللحظة $v_{(vol)} = 9.1 \times 10^{-3} \, \mathrm{mol.L^{-1}.min^{-1}}$

 C_1 ميروكسودي كبريتات البوتاسيوم وتركيزه V_1 محلول بيروكسودي كبريتات البوتاسيوم وتركيزه


4 -أ- عرف زمن نصف التفاعل 4

 $n_{1/2}(\Gamma) = \frac{n_0(\Gamma) - n_f(\Gamma)}{2}$: عطى بالعلاقة التالية : $n_{1/2}(\Gamma)$ عند $n_{1/2}(\Gamma)$ عند $n_{1/2}(\Gamma)$ عند $n_{1/2}(\Gamma)$ عند $n_{1/2}(\Gamma)$ عند عطى بالعلاقة التالية : $n_{1/2}(\Gamma)$ عند عمي كمية مادة شوار داليود الابتدائية في الوسط التفاعلي

ا ١٠٥١ : هي حميه مده سواردانيود الابتدائية في الوسط التفاعي

التفاعلي عند نهاية التفاعل $n_f(I^-)$

ج- أستنج قيمة t_{1/2} بيانيا .

التمرين الثاني:

. تصدر نواة أحد نظائر الكوبالت $rac{607Co}{27Co}$ إشعاعا eta^- مع نواة متولدة تكون في حالة مثارة .

-1ما معنى نظائرالكوبالت ؟ أعط تركيب النواة -1

2- أكتب معادلة تفكك "الكوبالت 60" : - أذكر القوانين التي تمكن من التعرف على النواة المتولدة.

II - يستقبل مركز طبي عينة من "الكوبالت60 "

25Mn	26Fe	27Co	28Ni	T	29Cu
		A			A

-1 أذكر بإختصار ما تعرفه عن إستخدام العناصر المشعة ومنها "الكوبالت60" في الطب .

 $m=g^{\mu}$ 1 عند نقطة إستقبالها في المركز الطبي. $m=g^{\mu}$ 1 عند نقطة إستقبالها في المركز الطبي.

النشاط λ ، λ

 $N = N_0 \left(\frac{1}{2}\right)^{t/t_{1/2}}$ كيف يسمى هذا القانون ؟ بين أنه يمكن كتابته بالشكل

 $M=60~{
m g/mol}$: "الكوبالت $60~{
m in}$ الكتلة المولية لـــ "الكوبالت $60~{
m in}$ الكتلة المولية المولية