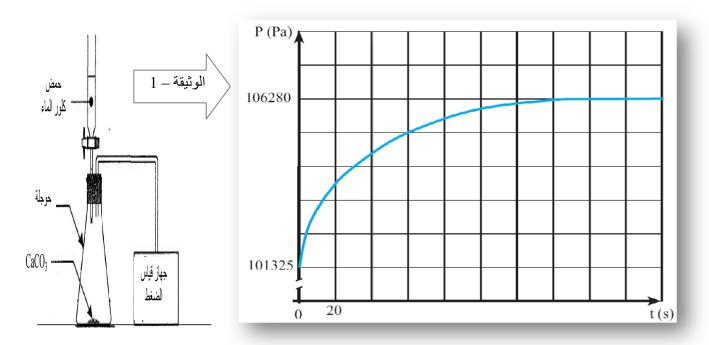
وزارة التربية الوطنية

ثاتوية يغمراسن ـ تلمسان الأستاذ: بن جبور محمد


﴿ اختبار الثلاثي الثاني في مادة العلوم الفيزيائية ﴾

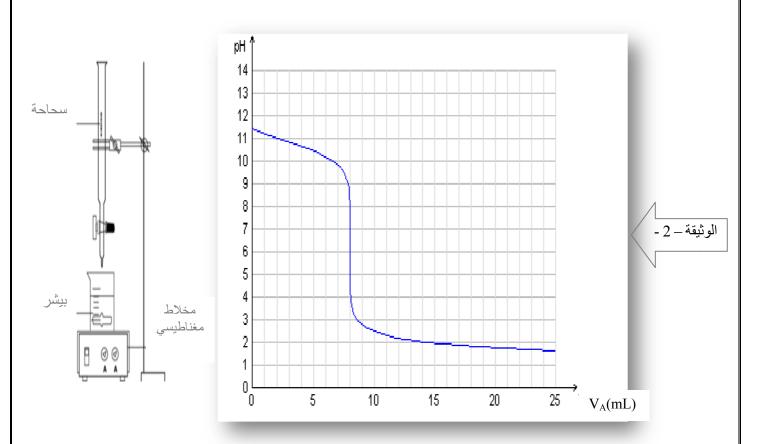
السنة الدراسية: 2010 / 2011

الشعبة: 3 ع ت التاريخ: 30 / 03 / 2011 المدة: 3 ساعات

التمرين الأول: (04 نقاط)

لتتبع تفاعل كربونات الكالسيوم الصلب $CaCO_{3(s)}$ مع محلول مائي لحمض كلور الماء $CaCO_{3(s)}$ عند درجة $V_0 = 1.2L$ عند درجة الحرارة التي نعتبرها ثابتة $V_0 = 0.25g$ ، ندخل كتلة $V_0 = 0.25g$ من كربونات الكالسيوم في قارورة حجمها ثابت $V_0 = 1.2L$ تم تحتوي على محلول لحمض كلور الماء تركيزه $V_0 = 0.12L^{-1}$ و حجمه $V_0 = 0.25g$ عند لحظة $V_0 = 0.25g$ ثم نتتبع تطور قيمة ضغط الخليط الغازي ($V_0 = 0.25g$) بواسطة مانومتر (جهاز قياس الضغط).

 $R = 8.314 \text{ J.K}^{-1}.\text{mol}^{-1}$, $M(CaCO_3) = 100 \text{ g.mol}^{-1}$, 1atm = 101325 Pa : نعطي


$$CaCO_{3(s)} + 2H_3O_{(aq)}^+ \rightarrow CO_{2(g)} + Ca_{(aq)}^{2+} + 3H_2O_{(\ell)}$$
 : معادلة التفاعل

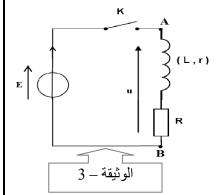
- 1. أنشئ جدول تقدم التفاعل.
- 2. إقترح تقنيتين مختلفتين عن التقنية المقترحة لتتبع تطور هذا التحول.
- 3. ذكر بالعلاقة المميزة لغاز مثالي مع تحديد وحدة كل مقدار في جملة الوحدات الدولية.
- 4. مكنت الدراسة التجريبية من رسم المنحنى البياني الممثل لتغيرات ضغط الخليط الغازي p بدلالة الزمن (الوثيقة 1) . أوجد عبارة السرعة الحجمية للتفاعل بدلالة $V_{\rm s}$ ، $V_{\rm o}$ ، $V_{\rm o}$ ، $V_{\rm o}$.
 - ب. أحسب قيمتها عند اللحظة التي توافق زمن نصف التفاعل.
 - ج. إذا علمت أن التفاعل تام ، أوجد المتفاعل المحد ثم استنتج كتلة $CaCO_{3(s)}$ المتفاعلة.
 - د. هل كربونات الكالسيوم المستعمل نقي أم لا ؟ في حالة الإجابة بلا . ماهي كتلة الشوائب الموجودة في العينة المدروسة ؟

اقلب الصفحة	الصفحة 1 / 4	فكر ثم أجب

التمرين الثانى: (04 نقاط)

نحقق المعايرة الـ pH مترية لحجم $V_B = 50 ml$ من محلول مائي لـ مثيل أمين cH_3NH_2 تركيزه المولي $c_B = 50 ml$ بواسطة محلول A لحمض كلور الماء $c_B = 0.1 mol/L$ تركيزه المولق المعايرة $c_A = 0.1 mol/L$ المحلول بدلالة حجم الحمض المضاف $c_A = 0.1 mol/L$.

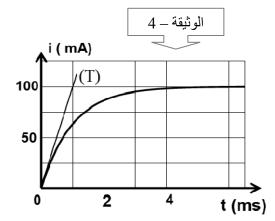
BENDJEBBOUR MOHAMED Tlemcen


- 1. أعط تعريف برونستد للأساس.
- 2. كيف تبين أن محلول مثيل أمين عبارة عن أساس؟
 - 3. اكتب معادلة تفاعل المعايرة. أذكر خصائصه.
- $C_{\rm B}$ عين إحداثيات نقطة التكافؤ واستنتج قيمة التركيز $C_{\rm B}$
 - 5. بين أن انحلال مثيل أمين في الماء محدود.
- . (CH₃N H₃+/CH₃N H₂) الثنائية pKa أوجد قيمة pKa
 - . $V_A = 8ml$ عند إضافة حجم عند النسبة $\frac{[CH_3NH_2]}{[CH_3NH_3^+]}$ عند .7
- . x_{eq} و x_{eq} عبر عن النسبة السابقة بدلالة : $C_{\rm B}$, $V_{\rm B}$ و x_{eq} قيمة التقدم عند التكافؤ) , ثم استنتج قيمة x_{eq}
 - 9. احسب نسبة التقدم النهائي τ لتفاعل المعايرة عند نقطة التكافق ماذا تلاحظ ؟ ماذا تستنتج ؟
 - 10. احسب ثابت التوازن K لتفاعل المعايرة . هل توافق هذه النتيجة استنتاجك في السؤال 9 ؟

اقلب الصفحة 🖘	الصفحة 2 / 4	فكر ثم أجب

التمرين الثالث (04 نقاط)

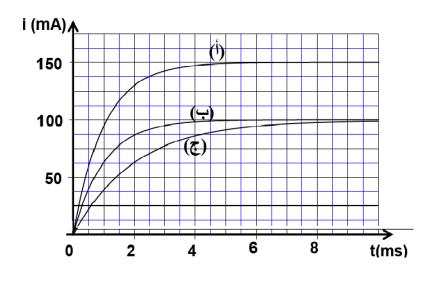
ننجز التركيب التجريبي الممثل في الوثيقة -3 - ، و ذلك لتتبع مرور التيار الكهربائي في ثنائي القطب AB المكون من :

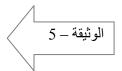

- ناقل أومى مقاومته R .
- وشيعة ذاتيتها L و مقاومتها r .

يطبق المولد المثالي توترا ثابتا E=6 v بين طرفي ثنائي القطب AB . نضبط قيمة مقاومة الناقل الأومي R عند القيمة Ω R=50 ، و نغلق القاطعة C عند اللحظة C .

نسجل بواسطة جهاز ملائم تطور شدة التيار i المار في الدارة بدلالة الزمن t ، فنحصل على المنحنى الممثل في الوثيقة t.

- 1. أعط عبارة التوتر u بين طرفي ثنائي القطب AB بدلالة : r · R · L و i .
 - 2. هل يتزايد أو يتناقص المقدار $\frac{di}{dt}$ أثناء النظام الانتقالي ؟ علل إجابتك.
 - . L عبر عند اللحظة t=0 ، عن $\frac{di}{dt}$ بدلالة E عبر عند اللحظة t=0
 - . r و استنتج قيمة t > 5 ms : بالنسبة لـ t > 5 ms . 4

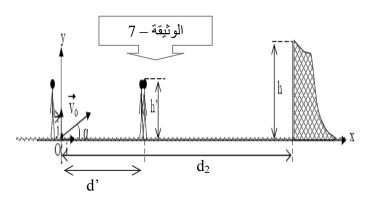



نستعمل نفس التركيب التجريبي (الوثيقة -3) ، و نغير في كل حالة قيمة ذاتية الوشيعة L و قيمة مقاومة الناقل الأومي R ، كما يبينه الجدول التالي:

(Ω) → r	(Ω) – R	(H) → L	الحالات
10	$R_1 - 50$	L_1 -6,0.10 ⁻²	الحالة الأولى
10	R ₂ =50	$L_2=1,2.10^{-1}$	الحالة الثانية
10	R ₃ =30	$L_3=4,0.10^{-2}$	الحالة الثالثة

يعطي الشكل المبين في الوثيقة -5 المنحنيات (أ)، (ب)، (ج) التي نحصل عليها في الحالات الثلاثة.

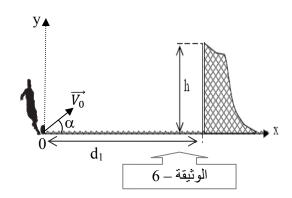
- 5. عين معللا إجابتك ، المنحنى الموافق للحالة الأولى و المنحنى الموافق للحالة الثانية.
- 6. نضبط المقاومة R_2 على القيمة R_2 لتكون قيمة ثابت الزمن نفسها في الحالتين الأولى و الثالثة.
 - R_{2}^{\prime} عبر عن R_{2}^{\prime} بدلالة R_{3}^{\prime} ، R_{3} ، R_{3} ، احسب قيمة R_{2}^{\prime}



التمرين الرابع (04 نقاط)

في مباراة لكرة القدم و في إطار التصفيات المؤهلة للعب النهائيات ، يحتاج الفريق الوطني للفوز بفارق هدفين أمام خصمه. أثناء المبارة و بعد عرقلة أحد عناصر فريقنا داخل منطقة الجزاء ، صفر حكم اللقاء ضربة جزاء يحاول من خلالها أحد المهاجمين ترجمتها إلى الهدف الأول.

لنمذجة الدراسة نهمل تأثير الهواء على الكرة التي نعتبرها نقطة مادية كتلتها m=430 g ، المرمى عبارة عن إطار مستطيل يتكون من قائمتين و عارضة أفقية ارتفاعها عن سطح الأرض h=2.44 ، تتم حركة الكرة في مستوى شاقولي $(\overrightarrow{ox}, \overrightarrow{oy})$ الذي نعتبره غاليليا ، نفرض أن g=9.81 m .s² .


- 1. لتنفيذ الضربة توضع الكرة عند النقطة O من أرضية الميدان في مواجهة المرمى و على بعد $d_1=11~m$ منه ، يقذف اللاعب الكرة بسرعة ابتدائية $\overline{V_0}$ شعاعها يقع ضمن المستوى xoy) و يصنع الزاوية 00 مع المستوى الأفقى (الوثيقة 0).
 - أ. V_0 , α , g : أدرس حركة الكرة في المعلم ($0,\vec{1},\vec{j}$) و استنتج معادلة المسار بدلالة
 - $\overline{m{
 u}}$ ما هي أقصى قيمة للسرعة الابتدائية $\overline{V_0}$ يجب أن يقذف بها اللاعب الكرة حتى تسكن في الشباك .
- 2. تتاح فرصة ثانية لتسجيل الهدف الثاني، و لكن في هذه المرة بعد عرقلة على بعد $d_2=25$ من المرمى،حيث يشكل في هذه المرة لاعبي الفريق الخصم جدار الرتفاعه d'=9.15 أمام المرمى و على بعد d'=9.15 من الكرة (الوثيقة 7). يقذف اللاعب الكرة بالسرعة الابتدائية $V'_0=17$ و التي تصنع نفس الزاوية α مع المستوى الأفقى .
 - أ. بين أن الكرة ستمر فوق الجدار ، على أي ارتفاع فوق الجدار تمر عندئذ ؟
 - ج. هل ستدخل الكرة المرمى ؟ إذا كان الجواب بنعم كم تكون سرعتها عندئذ لحظة دخولها للمرمى ؟
 - د. اعتبارا من لحظة قذفها ما هي المدة التي تستغرقها الكرة للوصول إلى المرمى ؟

BENDJEBBOUR

MOHAMED

Tlemcen

التمرين الخامس (04 نقاط)

أدت كارثة تشيرنوبيل ما بين الأول من ماي و الخامس منه سنة 1986 إلى تلويث إشعاعي لجزء كبير من أوربا نظرا لانتشار الإشعاعات الناتجة عن تفكك السيزيوم 134 $\binom{134}{Cs}$ و السيزيوم 137 $\binom{137}{Cs}$ في الغلاف الجوي.

- 1. السيزيوم 137 يصدر جسيمات β . أكتب معادلة التفكك محددا نواتجه.
 - 2. أحسب الطاقة المحررة خلال تفكك نواة السيزيوم 137.
- . $t_{1/2} = 2 \ ans$ عمر عمر $t_{1/2} = 2 \ ans$. وأيضا نواة مشعة ذات زمن نصف عمر $t_{1/2} = 2 \ ans$.
 - ب. أحسب قيمة ثابت النشاط الاشعاعي λ لنواة السيزيوم 134.
 - ج. حدد المدة الزمنية التي تلزم لتفكك 99% من السيزيوم 134.
 - $m(e^{-}) = 5.5 \times 10^{-4} u$, $1u = 931.5 \text{ MeV/c}^{2}$: $1u = 931.5 \text{ MeV/c}^{2}$

			·	,	
النواة	¹³² ₅₄ Xe	¹³⁷ ₅₅ Cs	¹³⁴ ₅₅ Cs	¹³⁷ ₅₆ Ba	¹³⁸ ₅₆ Ba
كتلة النواة (u)	131.90416	136.90707	133.90671	136.90581	137.90523

انته حظ سعاد		4	1/1420011		فکر تماجر		
							'
	كتله النواة (u)	131.90416	136.907/07	133.906/1	136.90581	137.90523	