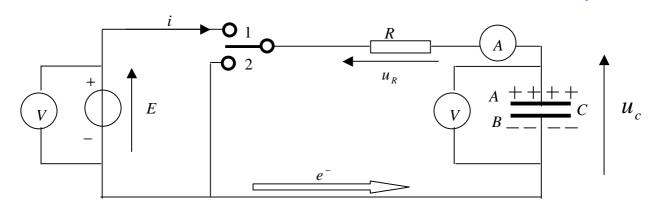
1قسم : 3المادة: فيزياء عملى


الموضوع: الظواهر الكهربائية

-RC الدارة المريغ مكثفة في ناقل أومى - الدارة المريغ مكثفة المريغ - -

يهدف هذا النشاط إلى دراسة شحن مكثفة ثم تفريغها في ناقل أومي، والبحث عن ثابت الزمن الموافق وتأثير كل من المقاومة والسعة عليه.

أ- تطور التوتر الكهربائي $oldsymbol{u}_c$ بين طرفي المكثفة عند شحنها.

C=2200 mF ، سعة المكثفة: $R=10K\Omega$ ، سعة المكثفة: $R=10K\Omega$ ، سعة المكثفة: التوتر الكهربائي المطبق من طرف مولد التيار المستمر E=5V ، حهاز أمبير متر ، أجهزة الفولط متر تركب على التوازي بين ثنائيات الأقطاب.

نضع القاطعة في الوضع (1) (وضع الشحن) ونتابع تطور قيم التوتر u_c بين طرفي المكثفة حلال الزمن (t) وأكمل الجدول التالي:

t(s)	0	10	20	30	40	50	60	70	100	150	200	220	240	260	280	300
$u_{c}(V)$	0	1.7	2.81	3.57	4.06	4.38	4.59	4.73	4.93	4.99	5	5	5	5	5	5

- ارسم المنحني البياني $U_{c}=f\left(t
 ight)$ بأخذ سلم رسم مناسب.
 - ارسم المستقيم المماس للبيان $U_{C}=f\left(t
 ight)$ عند المبدأ. -2
- $U_{C}=E$:مع المستقيم ذي المعادلة $U_{C}=f\left(t
 ight)$ مع المستقيم ذي المعادلة -3
 - 9 قارن هذه الفاصلة مع الجداء R imes C . ماذا تلاحظ -4
 - 5- كيف تتغير شدة التيار الكهربائي خلال الشحن من خلال ملاحظتك لجهاز الأمبير متر .

ب- تطور التوتر الكهربائي u_c بين طرفي المكثفة عند تفريغها:

نضع القاطعة في الوضع (2) (وضع التفريغ) ونتابع تطور قيم التوتر u_c بين طرفي المكثفة خلال الزمن (1) وأكمل الجدول التالي:

9 - 5 6 5 () 6 5 -							1 37 (63					
t(s)	0	10	20	30	40	50	60	70	100	150	200	220
$u_{c}(V)$	5	3.30	2.16	1.42	0.937	0.618	0.408	0.271	0.073	0.00817	906×10 ⁻⁶	380×10 ⁻⁶
t(s)	240	260	280	465								
$u_{c}(V)$	161×10 ⁻⁶	68.7×10^{-6}	29.1×10^{-6}	0								

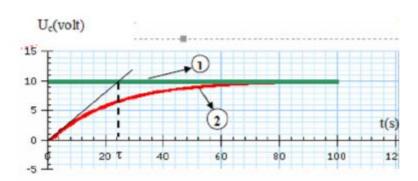
- 1- أرسم المنحني البياني $U_{C}=f\left(t
 ight)$ بأخذ سلم رسم مناسب.
- $.U_{C}=E=5\!V$ عند $U_{C}=f\left(t
 ight)$ عند -2
 - . حدّد ثابت الزمن t بيانيا يمثل فاصلة تقاطع المماس مع محور الأزمنة t
 - 4- قارن هذه الفاصلة مع الجداء R imes C و ماذا تلاحظ ؟
- 5- كيف تتغير شدة التيار الكهربائي حلال الشحن من حلال ملاحظتك لجهاز الأمبير متر .

جــ - دراسة تأثير كل من ${f R}$ و ${f C}$ على ثابت الزمن.

R تأثير مقاومة الناقل الأومي R

نعيد نفس التحربة السابقة (الشحن)و لكن نأخذ $R=20K\,\Omega$ و قيمة $R=200\,$ ثابتة

أحسب ثابت الزمن t=R imes C و ماذا تستنتج.


: C تأثير سعة المكثفة -2

C=4400 mF ثعيد نفس التجربة السابقة و لكن نأخذ $R=10K\,\Omega$ ثابتة و قيمة

أحسب ثابت الزمن t=R imes C و ماذا تستنتج.

? هل تؤثر قيمة التوتر E المقدم من طرف المولد على ثابت الزمن

الإجابة:

أ- حالة شحن المكثفة (القاطعة في الوضع 1):

:
$$U_{C}=f\left(t\right)$$
 رسم البيان -1

سلم الرسم:

 $1cm \rightarrow 20s$

 $1cm \rightarrow 1v$

مناقشة البيان:

يمكن تقسيم المنحني الناتج إلى مرحلتين:

المرحلة الأولى:

يتطور التوتر الكهربائي U_c بين طرفي المكثفة من القيمة 0 إلى القيمة E=5V تدريجيا خلال عملية الشحن يسمى نظام إنتقالي. المرحلة الثانية:

. تثبت قيمة U_c عند القيمة E=5V و عندها تكون المكثفة قد شحنت تماما أي نهاية عملية الشحن يسمى نظام دائم

: (R imes C) غدید ثابت الزمن t و مقارنته مع الجداء -2

t = يانيا :

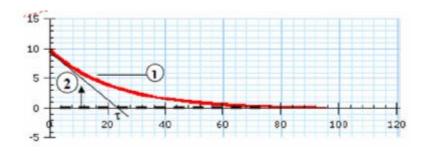
 $(R \times C = 10000 \times 2200 \times 10^{-6} = 22S)$ الجداء :

. t=R imes C التايي بالقانون التالي ثابت الزمن يعطى بالقانون التالي t=R imes C

4- نلاحظ أن شدة التيار موجبة و لكنها متناقصة إلى أن تنعدم و هذا يدل على ان التيار يمر لفترة قصيرة يدعي تيار الشحن .

التيار المار في الدارة ناتج عن الإنتقال السريع للإلكترونات نحو اللبوس B و تتراكم عليه و يشحن سلبا في نفس اللحظة تغادر الإلكترونات اللبوس B اللبوس A مساوية لعدد الإلكترونات المتنقلة إلى اللبوس B تشحن المكثفة ويصبح التيار معدوما i=0 .

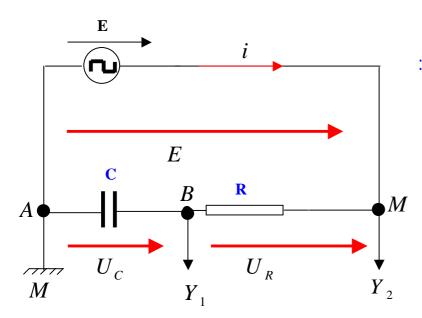
ب- حالة تفريغ المكثفة (القاطعة في الوضع 2) :


1- التوتر الكهربائي بين طرفي المكثفة يتناقص تدريجيا مع مرور الزمن خلال عملية التفريغ (نظام إنتقالي) حتى يصل إلى قيمة ثابتة معدومة عند نهاية عملية التفريغ (نظام دائم).

2- تحديد ثابت الزمن:

t = :

 $(R \times C = 10000 \times 2200 \times 10^{-6} = 22S)$: الجداء


5- شدة التيار الكهربائي سالبة ولكنها متزايدة مع مرور الزمن و عند نهاية التفريغ تنعدم .

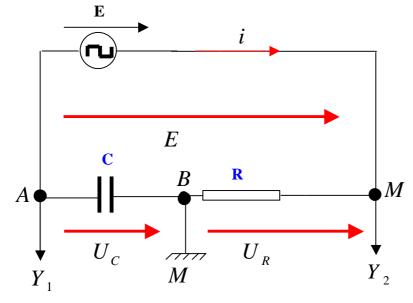
2- مشاهدة منحنى الشحن و التفريغ بواسطة راسم الإهتزاز المهبطى (l'oscilloscope):

- يمكن دراسة عملية الشحن و التفريغ للمكثفة بواسطة راسم الإهتزاز المهبطي حيث تغذى الدارة (RC)

النواتر (Générateur $-\grave{a}-Basses-fréquences$) النواتر (Générateur $-\grave{a}-Basses-fréquences$)

- نحقق الدارة الموضحة في الشكل المقابل:

المدخل الأول : Y_1


المدخل الثاني : Y_2

M (سررر): الرابط الأرضييعتبر مرجع لتحديد التوتر الكهربائيبين ثنائي قطب ما .

- المكثفة موجودة بين الرابط الأرضي M و المربط Y_1 فإنه يظهر على شاشة راسم الإهتزاز المهبطي منحنى الشحن و التفريغ البيان $U_c = f(t)$

- المولد بين المربط Y_2 و الرابط الأرضي M لذا نشاهد منحنى تغير التوتر بين طرفي المولد ذي الإشارة المربعة.

 $U_{c}=f\left(t
ight)$ و التوتر الكهربائي بين طرفي الناقل الأومي $U_{c}=f\left(t
ight)$ و التوتر الكهربائي بين طرفي الناقل الأومي $U_{c}=f\left(t
ight)$ عند النوطة $M_{c}=M_{c}$ كما في الشكل $U_{R}=f\left(t
ight)$

 $R = 1K\Omega$ و C = 1mF

: فكل البيانين $u_{c}=f(t)$ و $u_{c}=f(t)$ فلال عملية التفريغ

ملاحظات

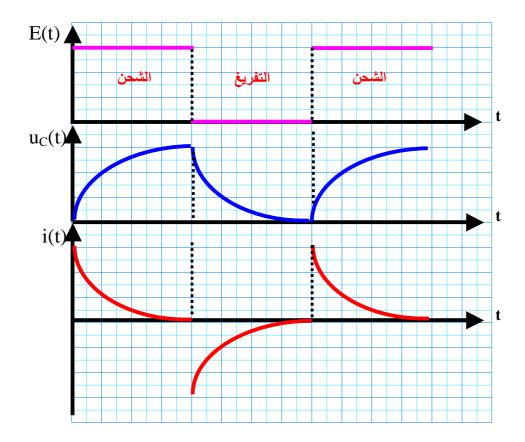
ركب دارة مؤلفة من مولد التواترات المنخفضة GBF ذو إشارة مربعة حيث H_Z H_Z ، مكثفة سعتها $C=0.5\,m$ وناقل أومي مقاومته $C=0.5\,m$ وصل راسم الإهتزاز المهبطي كما في الشكل لمشاهدة بيان تغيرات التوتر بين طرفي المكثفة بتغير الزمن و بيان تغيرات التوتر بين طرفي الناقل الأومي بتغير الذمن

التجربة

A C B R D

Y₁ -Y₂

 $\frac{T}{2}$ الإشارة المربعة تعني أنه في مدة نصف الدور $u_{G}
angle 0$ يكون $u_{G}
angle 0$ ، فتشحن المكثفة


وفي مدة نصف الدور الموالية يصبح $u_G = 0$ فتتفرغ المكثفة .

تسمح الإشارة المربعة بتكرار الظاهرة في أزمنة يمكن متابعتها .

2- تظهر على شاشة راسم الإهتزاز المهبطي بيانات التوتر بين طرفي ثنائي قطب.

التوتر بين طرفي ثنائي قطب . فمثلا يظهر على شاشة راسم الإهتزاز المهبطي بيان فمثلا يظهر على شاشة راسم الإهتزاز المهبطي بيان التوتربين طرفي الناقل أما بيان شدة التيار فيستنتج منه إعتمادا على قانون أوم $\mathbf{u}_{\mathbf{R}}(t) = \mathbf{R}.\mathbf{i}(t)$.

1- مثل البيانات المشاهدة والمستنتجة من راسم الإهتزاز المهبطي

المؤسسة : ثانوية أحمد بن يحيى الونشريسي تيسمسيلت قسم : السنة الثالثة ثانوي شعبة تقني رياضي

المادة: فيزياء عملي الموضوع: الظواهر الكهربائية

الطاقة المخزنة في مكثفة

1 - الهدف:

- إبراز الطاقة المخزنة في مكثفة تجريبيا
- تحديد العوامل المؤثرة على الطاقة المخزنة في مكثفة

2- الأدوات:

عمود قوته المحركة الكهربائية 4.5V ، مولد قوته المحركة الكهربائية متغيرة (مجموعة أعمدة) مكثفات بسعات مختلفة ($C=2200~\mu F~; C=100~\mu F~; C=1000~\mu F~; C=1000~\mu$

مصباح 1.5v، بادلة K ، مقياس فولط.

التجربة: العوامل المؤثرة على الطاقة المخزنة في مكثفة:

نعتمد في هذه الدراسة على ملاحظة تغيرات شدة أضاءة المصباح خلال تفريغ المكثفة بالتأثير على

عاملي التوتر الكهربائي للشحن والسعة.

أ- تأثير توتر الشحن على الطاقة المخزنة:

نأخذ مكثفة ذات سعة معلومة ونشحنها باستعمال

عمود قوته المحركة الكهربائية E ثم نفر غها في

المصباح ونلاحظ شدة إضاءته. نكرر التجربة بالحفاظ على نفس المكثفة ولكن بتغيير قيمة توتر الشحن (... 3E; 3E; 4E)

ب - تأثير السعة:

نثبت توتر الشحن باستعمال عمود 4.5V ونغير في قيمة C; 2C; 3C) ونالحظ في كل مرة شدة إضاءة المصباح

الإجابة:

التجربة رقم 1:

نلاحظ زيادة توهج المصباح كلما إزداد توتر الشحن E

نستنتج أن الطاقة التي تخرّنها المكثفة أثناء شحنها تزداد كلما إزداد توتر الشحن التجرية رقم2:

C نلاحظ زيادة توهج المصباح كلما إزدادت سعة المكثفة

نستنتج أن الطاقة التي تخرّنها المكثفة أثناء شحنها تزداد كلما إزدادت سعة المكثفة C

النتيجة: تتعلق الطاقة المخزنة في مكثفة بسعتها و توتر الشحن.

المادة: فيزياء عملي

الموضوع: الظواهر الكهربائية

II - دراسة الدارة RL:

هي عبارة عن دارة كهربائية تتكون من ناقل أومي مقاومته R مربوط على التسلسل مع وشيعة ذاتيتها (L) بالهنري (r) و مقاومتها (r) بالأوم (r)

الهدف من التجربة:

- الدراسة بواسطة راسم الاهتزازات لدارة RL خاضعة لمستوى واحد من التوتر.

I-الدراسة بواسطة راسم الاهتزازات لدارة RL خاضعة لمستوى واحد من التوتر.

- وشيعة ذاتيتها L=1.8H ومقاومتها $r=5\Omega$ يمكن قياسها بجهاز الأوم متر (القيم مسجلة على الوشيعة).
 - مقل أومي مقاومته $R=110\Omega$.

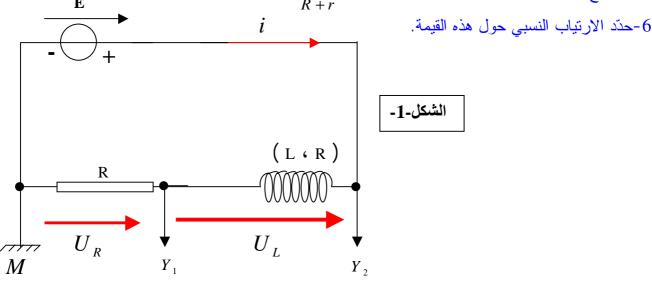
نغذي المجموعة بواسطة مولد منخفض التواتر (GBF) ذي إشارة مربعة قيمة التوتر الكهربائي المطبق من طرف المولد E = 4.5V وتواتره E = 4.5V .

1- ركب الدارة الكهربائية الموضحة في الشكل-1-.

2- حدد البيان الذي يمثل التوتر الكهربائي $U_R = f(t)$ بين طرفي الناقل الأومي و البيان الذي يمثل التوتر الكهربائي E = g(t) الكهربائي E = g(t)

3- هل يمكننا بيان التوتر الكهربائي بين طرفي الناقل الأومي من متابعة تغيرات شدة التيار الكهربائي.

t نريد تحديد ثابت الزمن t لهذه الدارة الكهربائية بواسطة طريقتين:


أ- بتحديد نقطة تقاطع المستقيم المماس للبيان $U_{\scriptscriptstyle R}=f\left(t
ight)$ عند المبدأ مع المستقيم ذي المعادلة

 $U_{R}=U_{R(\max e)}$ و إسقاطها على محور الزمن U_{R}

ر ($i=0.63I_{
m max}$) $U_R=0.63U_{R({
m max}e)}$ أو شدة التيار $U_R=0.63U_{R({
m max}e)}$

 $U_{R\,({
m max}\,e)}=R imes I_{
m max}$ حيث $I_{
m max}$ التيار الأعظمية التيار الأعظمية علمية علم الم

 $t = \frac{L}{R+r}$ استنتج القيمة الحقيقية للذاتية للذاتية - 1 استنتج القيمة الحقيقية الذاتية - 5

تحليل التجربة

. عند المدخل $y_{_1}$ نشاهد التوتر الكهربائي $U_{_R}=f\left(t
ight)$ بين طرفي الناقل الأومي $y_{_1}$

عند المدخل y_2 نشاهد التوتر الكهربائي بين طرفي (الوشيعة + الناقل الأومي)أي بين طرفي المولد E=g(t)

. $i=f\left(t\right)$ من متابعة تغير ات $U_{\scriptscriptstyle R}=f\left(t\right)$ من مكننا البيان -3

. گان R میت $U_R=R imes i=rac{U_R}{R}$ گان :

. متماثلین $U_R = f(t)$ و i = f(t) متماثلین

4- أ- تحديد ثابت الزمن t برسم المستقيم المماس للبيان $U_{R}=f\left(t\right)$ و نقطة تقاطع هذا المستقيم مع

. $t=16ms=16 imes10^{-3}s$ المستقيم $U_R=U_{R\,({
m max}e\,)}$ يمثل ثابت الزمن. و منه

ب- تحديد ثابت الزمن بتعيين القيمة $U_R=0.63U_{R(\max e)}=0.63\times 4.2=2.65v$ على محور التوتر الكهربائي و إسقاطها على محور الزمن فنجد ان $t=16ms=16\times 10^{-3}s$

جـ- حساب قيمة شدة التيار الكهربائي الأعظمي:

$$U_{R(\text{max}e)} = R \times I_{\text{max}} \Rightarrow I_{\text{max}} = \frac{u_{R(\text{max})}}{R} = \frac{4.2}{110}; 0.04A$$

5- حساب القيمة الحقيقية لذاتية الوشيعة L:

$$t = \frac{L}{R+r} \Longrightarrow L = t(R+r) = 16 \times 10^{-3} \times (110+5) = 1.84H$$

6- الإرتياب النسبى (دقة القياس):

- تمثلُ النسبة بين أكبر خطأ مرتكب في القياس يسمى الإرتياب المطلق Δa و القيمة المقربة من الحقيقة تسمى القيمة المتوسطة . a_{moyen}

 $\frac{\Delta a}{a_{moyen}}$: أي

 $a_{moven} = \frac{a_1 + a_2 + a_3 + \dots + a_n}{n}$:

n: عدد مرات القياس الفيزيائي للمقدار n

 $\Delta a = a_{\max imal} - a_{moyen} = a_{moyen} - a_{\min imum}$ الإرتياب المطلق يعطى بالعاّلقة التالية:

- حساب الإرتياب النسبي المرتكب في قيمة الذاتية:

 $\frac{\Delta L}{L_{moven}}$

$$L_{moven} = \frac{L_1 + L_2}{2} = \frac{1.8 + 1.84}{2} = 1.82H$$
 القيمة المتوسطة:

 $La = L_{\text{max}\,imal} - L_{moyen} = L_{moyen} - L_{\min\,imum} = 1.84 - 1.82 = 1.82 - 1.8 = 0.02H$: الإرتياب المطلق

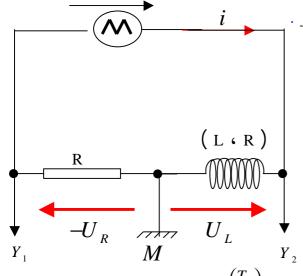
$$\frac{\Delta L}{L_{moven}} = \frac{0.02}{1.82} = 0.01 = 1\%$$
 : الإرتياب النسبي

. RL وشیعة فی داره L

نريد تحديد ذاتية وشعية ، نحقق التركيب المحتوى على العناصر التالية موصولة على التسلسل:

وشيعة (L,r) دانيتها مجهولة ومقاومتها مهملة r=0 (الوشيعة بدون النواة من الحديد اللين)

 $R = 5K\Omega$ ناقل أومي -


ن مولد للتوتر المتناوب المثلثي يقدم توتر E=3V وتواتره f=50HZ .

- عند تشغيل الدارة نحصل على المنحنيات الموضحة على الوثيقة (3) .

1 - من بين هذين التوترين، أيهما يسمح بمشاهدة شدة التيار i ؟ علل.

L أحسب قيمة ذاتية الوشيعة L .

3- قارنها مع القيمة المكتوبة على الوشيعة.

1 - نلاحظ من الوثيقة (3) مايلي:

. $\left(\frac{T}{2}\right)$ بين طرفي الوشيعة ثابت موجب ثم ثابت سالب خلال كل نصف دور U_{L} -

يتغير حسب دالة متناقصة ثم متزايدة خلال كل نصف دور : $U_R = -R imes i$

2- حساب ذاتية الوشيعة:

$$U_L = L \frac{di}{dt} \Rightarrow L = \frac{U_L}{\frac{di}{dt}} \rightarrow (1)$$
 : لدينا

 $U_L = 1.2mv = 1.2 \times 10^{-3}v \rightarrow (2)$ من البيان $U_L = g(t)$ نلاحظ أن $U_L = g(t)$

 $\frac{di}{dt}$: نبحث عن القيمة المجهولة ل

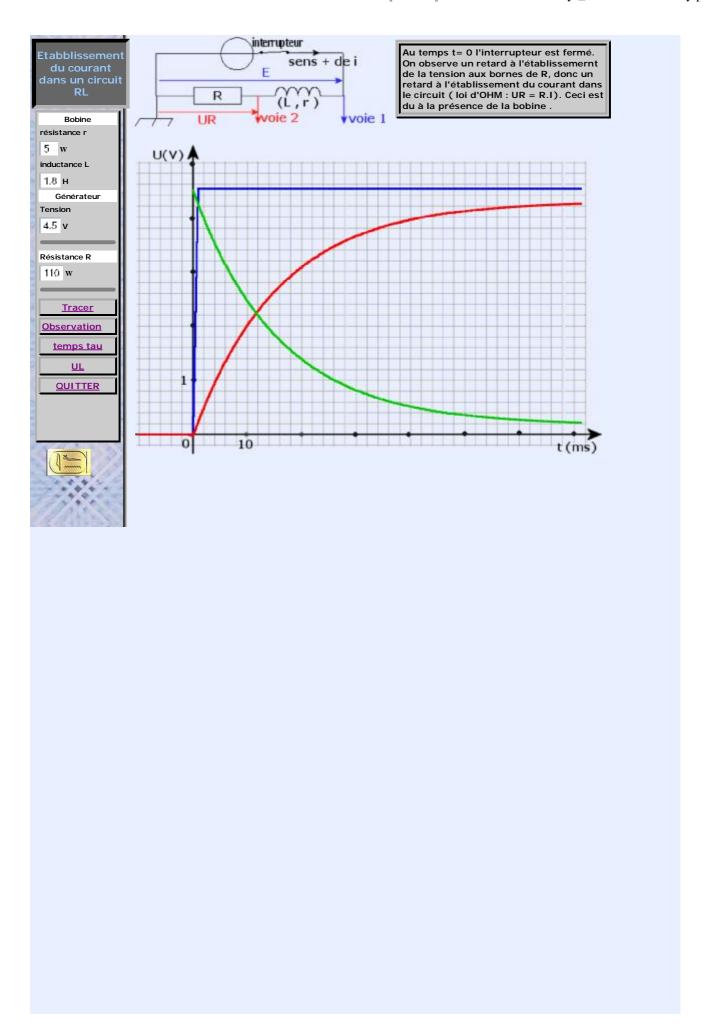
ن البيان بالنسبة لـ U_R خلال نصف دور $\left(\frac{T}{2}\right)$ هي :

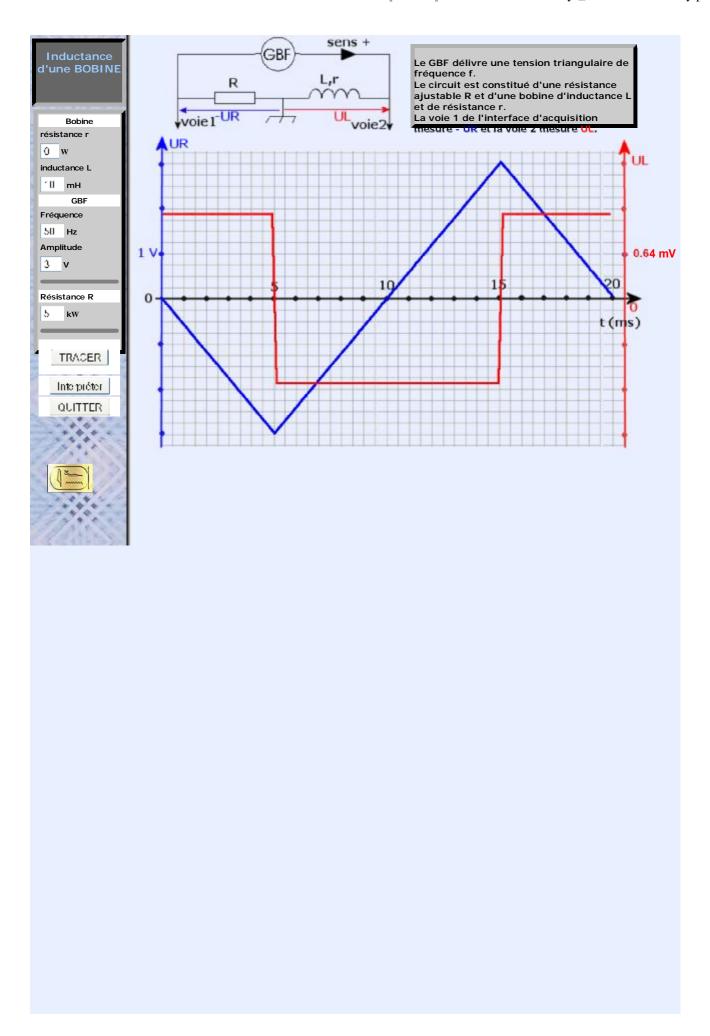
$$U_{R} = at + b \rightarrow (3)$$

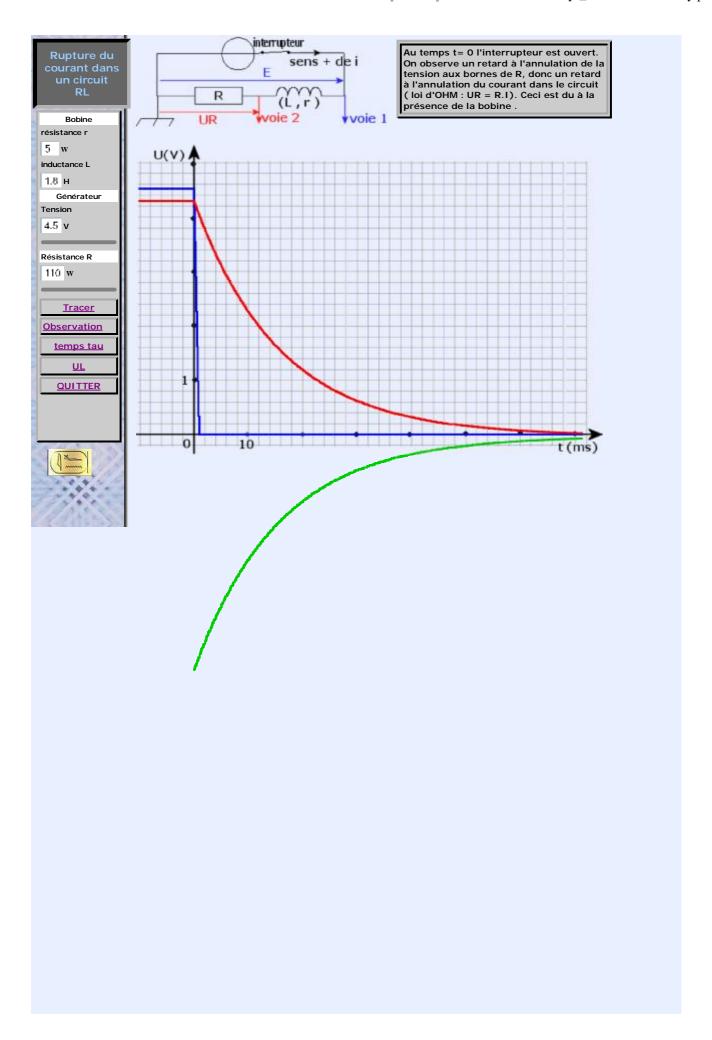
$$\frac{dU_R}{dt} = a \rightarrow (4)$$

 $a = tg \ a = \frac{\Delta U_R}{\Delta t} = \frac{0 - (-3)}{0 - 5} = -0.6v \ / ms = -600v \ / s :$

$$U_R = -R \times i \Rightarrow i = -\frac{U_R}{R} \Rightarrow \frac{di}{dt} = -\frac{1}{R} \cdot \frac{dU_R}{dt} \rightarrow (5)$$
 الدينا


بتعويض قيمة الميل a العلاقة (4)في (5) نحصل على مايلي:


$$\frac{di}{dt} = -\frac{1}{R}a = -\frac{1}{5000}.(-600) = 0.12A / S \rightarrow (6)$$


و في الأخير نعوض قيمة $\frac{di}{dt}$ و قيمة U_L في العلاقة (1) نستنج ذاتية الوشيعة :

$$L = \frac{U_L}{\frac{di}{dt}} = \frac{0.0012}{0.12} = 0.01H = 10mH$$

و هي نفس القيمة المسجلة على الوشيعة.

