$$\mathbf{u}_{\mathrm{n}} = \frac{1}{\mathrm{n}(\mathrm{n}+1)}$$
 بـ: \mathbb{N}^* متتالية عددية معرفة في

- $.\mathbf{u}_{3}$ و \mathbf{u}_{2} ، \mathbf{u}_{1} أحسب (1
- يين أن المتتالية $\left(u_{
 m n}
 ight)$ متناقصة تماما.

$$u_n = \frac{a}{n} + \frac{b}{n+1}$$
: على الشكل $u_n = \frac{a}{n+1} + \frac{b}{n+1}$ على الشكل (3

حیث a و b عددان حقیقیان یطلب تعیینهما.

$$S_n = u_0 + u_1 + \dots + u_n$$
 استنتج بدلالة n المجموع: $u_n = 3n - 2$ استنتج عددية معرفة على $u_n = 3n - 2$

- 1) احسب الخمس حدود الأولى ،ثم احسب الحد العشر
- 2) هل العدد 2011 هو حد من حدود هذه المتتالية?
- 3) مثل على حامل محور الفواصل الخمس حدود الأولى $\left(\mathbf{u}_{_{\mathbf{u}}}
 ight)$ ادرس اتجاه تغير المتتالية $\left(\mathbf{u}_{_{\mathbf{u}}}
 ight)$

$$\mathbf{u}_{\mathrm{n+1}} = 3\mathbf{u}_{\mathrm{n}} + 1$$
 متتالية معرفة على \mathbb{N} بـ: $\mathbf{u}_{\mathrm{0}} = 0$

- افی معلم متعامد و متجانس $(0; \tilde{i}; \tilde{j})$ مثل علی محور $(0; \tilde{i}; \tilde{j})$ الفواصل \mathbf{u}_1 ، \mathbf{u}_1 ، \mathbf{u}_2 ، الستقيمين
 - y = 3x + 1و (' Δ) اللذين معادلتا هما y = x
 - 2) تحقق من النتائج المحصل عليها حسابيا
 - $\mathbf{u}_{n+1} = \mathbf{f}(\mathbf{u}_n)$ لتكن \mathbf{f} دالة عددية حيث (3
 - x بدلالة f(x) بدلالة
- (u_n) باستعمال اتجاه تغير الدالة f استنتج اتجاه تغير

$$\mathbf{u}_{\mathrm{n}} = \frac{-2n^2 + 3n + 1}{n}$$
بـِ: \mathbb{N}^* بـِ معرفة على معرفة على معرفة على المتالية المتالي

- $\left(u_{n}\right)$ الدرس إشارة الفرق $u_{n+1}-u_{n}$ استنتج اتجاه تغير ا
- ي أعط دالة f تحقق $u_n = f(n)$ باستعمال اتجاه تغير (2 الدالة f تحقق من النتيجة المحصل عليها في السؤال السابق

$$\mathbf{u}_{\mathrm{n+1}} = \frac{\mathbf{u}_{\mathrm{n}}}{\sqrt{\mathbf{u}_{\mathrm{n}}^2 + 1}}$$
: متتالية معرفة على $\mathbf{v}_{\mathrm{n+1}} = \frac{\mathbf{u}_{\mathrm{n}}}{\sqrt{\mathbf{u}_{\mathrm{n}}^2 + 1}}$

- $\mathbf{u}_0 = 1$ ان علما ان \mathbf{u}_3 ، \mathbf{u}_2 ، \mathbf{u}_1 ان أحسب الحدود . n بدلالة u_n بدلالة العبارة ب
- $v_{n}=\frac{1}{\sqrt{n+1}}$: ب N متتالیة معرفة علی (v_{n}) (2 $\left(\mathsf{V}_{\!\scriptscriptstyle \mathrm{n}}
 ight)$ أدرس إتجاه تغير المتتالية
- r متتالية حسابية حدها الاول $u_{_0}$ واساسها $u_{_0}$
 - و $_{n}$ S مجموع n حدا الاولى لهذه المتتالية حيث:

$$S_n = u_0 + u_1 + u_2 + \dots + u_{n-1}$$

- $u_{_{14}}=25$ و $u_{_0}=-3$: علما ان r علما ان (1 2) احسب r و n علما ان :
 - - : احسب r و u_0 علما ان r
 - n=20 $s_n = 400$ $u_{n-1} = 39$
 - و δ حدود متعاقبة بهذا الترتيب لمتتالية eta ، lpha
 - حسابیة أساسها موجب. عین δ ، β ، δ حیث

$$\begin{cases} \alpha + \beta + \delta = 9 \\ \alpha^2 + \beta^2 + \delta^2 = 35 \end{cases}$$

- متتالية حسابية حيث $u_0=5$ وأساسها u_n
- \mathbf{n} احسب $\mathbf{u}_{0}+\mathbf{u}_{1}+\ldots+\mathbf{u}_{n}$ ثم احسب $\mathbf{u}_{0}+\mathbf{u}_{1}+\ldots+\mathbf{u}_{n}$ بدلالة
- 2) إذاكان مجموع ثمانية حدود متعاقبة من هذه المتتالية هو 2008 فماهو الحد الأول من هذه الحدود.
 - N^* متتالیة حسابیة متزایدة معرفه علی $\left(u_{_{n}}\right)$

- $\int u_1 + u_2 + u_3 + u_4 = 14$ حيث: $\left| u_1^2 + u_2^2 + u_3^2 + u_4^2 \right| = 94$
- $u_{\scriptscriptstyle n}$ احسب $u_{\scriptscriptstyle n}$ و r ثم استنتج عبارة $u_{\scriptscriptstyle 1}$ بدلالة (1
- $s_n = u_1 + u_2 + u_3 + \cdots + u_{2010}$: \(\sum_{2010}\)
 - لتكن (v_n) منتالية حسابية متزايدة. حبث:
 - $v_0 \times v_2 = 39$ $v_0 + v_1 + v_2 = 24$
 - $\mathbf{v}_{_{0}}$ عين الاساس و الحد الاول ا
 - n عين عبارة v_n بدلالة
- $v_0 + v_1 + \dots + v_n = 366$: عين قيمة العدد الطبيعي n عين العدد الطبيعي
- $\mathbf{u}_0 = 3$ لتكن المتتالية $\left(\mathbf{u}_n\right)_{n\in\mathbb{N}}$ المعرفة بحدها الأول
 - $u_{n+1} = u_n 5n 1$. $u_{n+1} = u_n 5n 1$
- $v_n = u_{n+1} u_n$: ب $n \in \mathbb{N}$ متتالية معرفة من أجل v_n
- أثبت أن (v_n) م ح يطلب تعيين أساسها و حدها الأول
- أحسب v_n بدلالة n ثم أحسب المجموع S مجموع محد
 - $(\mathbf{u}_{\scriptscriptstyle \mathrm{n}})$ الأولى من المتتالية $(\mathbf{v}_{\scriptscriptstyle \mathrm{n}})$ استنتج
 - $m v_0=2$:متتالية معرفة بحدها الأول $m (v_n)$
 - $v_{n+1} = \frac{3v_n 1}{v_1 + 3}$ ، من أجل كل عدد طبيعي
 - $v_n \neq 1$ نضع: $u_n = \frac{1}{v_n 1}$:
 - \mathbf{u}_2 ، \mathbf{u}_1 و \mathbf{v}_2 و \mathbf{v}_1 ، \mathbf{v}_0 احسب کلا من \mathbf{v}_1 ، \mathbf{v}_0
- (u_n) بر هن أن (u_n) متتالية حسابية يطلب تعيين أساسها
 - \mathbf{u}_n بدلالة \mathbf{u}_n ، ثم استنتج \mathbf{u}_n بدلالة \mathbf{u}_n
 - $S_n = u_0 + u_1 + ... + u_n$ (عين بدلالة n عين بدلالة

 $\mathbf{u}_0\!=\!7$ متتالية هندسية أساسها $\mathbf{q}\!=\!3$ وحدّها الأول $(\mathbf{u}_{\!\scriptscriptstyle \mathrm{n}})$

 u_1 احسب ا u_2 و (1

 u_n اكتب عبارة الحد العام u_n اكتب

3) احسب الحد السابع لهذه المتتالية.

4) هل العدد 2010 حد من حدود هذه المتتالية؟.

 $S = u_1 + u_2 + \dots + u_{2010}$ | $L_2 = u_1 + u_2 + \dots + u_{2010}$

و ${f c}$ أعداد حقيقية غير معدومة ${f b}$ ، ${f a}$

1) بين أنه إذا كانت a ، b ، c و c بهذا الترتيب تشكل حدود متتابعة لمتتالية هندسية فإن c

$$a^2 + b^2 + c^2 = (a + b + c)(a - b + c)$$
.

جد ثلاث حدود متتابعة لمتتالية هندسية علما أن مجموعها هو 78 ومجموع مربعاتها هو 3276.

متتالية هندسية كل حدودها موجبة حيث حدّها $\left(\mathbf{v}_{_{\mathrm{n}}}
ight)$

$$v_4 = \frac{3}{16}$$
 و $v_2 = \frac{3}{4}$ الأول v_1 بحيث:

n بدلالة v_n بدلالة r والأساس v_1 بدلالة (1

 $S_n = V_1 + V_2 + \cdots + V_n$ احسب بدلالة n المجموع (2

ش (a_n) متتالية هندسية كل حدودها موجبة حيث حدّها

$$.\alpha_3 + \alpha_5 = \frac{15}{16}$$
 و $\alpha_1 = 3$: الأوّل

 $_{ ext{.}}\left(lpha_{ ext{n}}
ight)$ عين أساس المتتالية (1

 $\mathbf{s}_{\mathrm{n}} = \alpha_{\mathrm{1}} + \alpha_{\mathrm{2}} + \ldots + \alpha_{\mathrm{n}}$ أحسب المجموع \mathbf{s}_{n} حيث:

$$S_{n} = -6 \Big[2^{-10} - 1 \Big]$$
 عين العدد الطبيعي n حيث (3

 $9x^2-18x+8=0...(1)$ حل في \mathbb{R} المعادلة التالية \mathbf{u}_4 0 متتالية هندسية متز ايدة تماما حداها \mathbf{u}_4 8 هما حلى المعادلة (1).

ا) احسب الأساُس $\hat{\mathbf{r}}$ و الحد الاول \mathbf{u}_1 لهذه المتتالية.

 $u_1 = \frac{1}{6}$ و r = 2: ب)نفرض ان

* اكتب عبارة $\mathbf{u}_{\mathbf{n}}$ بدلالة \mathbf{n} ثم استنتج قيمة الحد العاشر

 $S_n = u_1 + u_2 + \cdots + u_n$ المجموع n المجموع *

 $S = u_1 + u_2 + \dots + u_{2011}$

1) حلل العدد الطبيعي 1024 إلى جداء عوامل أولية

 $\left(U_{_{0}}\right)$ متتالية عددية حدها الاول $\left(U_{_{n}}\right)$

 $U_n = 3 \times 4^n \ n \in \mathbb{N}$ ومن اجل كل

أ) أحسب الخمس حدود الأولى لهذه المتتالية

ب)اثبت ان $(\mathrm{U_n})$ متتالية هندسية يطلب تحديد أساسها

جـ) عين الحد الذي قيمته 3072

nد)أحسب المجموع $S_n = U_0 + U_1 + + \dots + U_n$ بدلالة

 $P_n=U_0.U_1.$ بدلالة $P_n=U_0.U_1.$ بدلالة $P_n=U_0.U_1.$ متتالية عددية معرفة كمايلي:

$$\mathbf{U}_{\mathrm{n+1}} = \frac{3}{2}\mathbf{U}_{\mathrm{n}} + 1$$
: $\mathbf{n} \in \mathbb{N}$ ومن اجل كل $\mathbf{U}_{\mathrm{0}} = 1$

 U_3 ، U_2 ، U_1 احسب الحدود (1

 $\mathbf{V}_{\!\scriptscriptstyle \mathrm{n}} = \! \mathbf{U}_{\!\scriptscriptstyle \mathrm{n}} + \! 2$ متتالية معرفة ب $\! (\mathbf{V}_{\!\scriptscriptstyle \mathrm{n}}) (2)$

أ)بين أن المتتالية (١٠) هندسية يطلب تحديد عناصر ها المميزة

n بدلالة U_n بدلالة U_n بدلالة U_n بدلالة U_n بدلالة U_n

3)أحسب بدلالة n المجمو عين:

 $P_n=U_0+U_1++\ldots+U_n$ و $S_n=V_0+V_1+\ldots+V_n$ $N_n=V_0+V_1+\ldots+V_n$ $N_n=V_0+V_1+\ldots+V_n$ في 1 جانفي 2001 أودع رائد رصيد 2001 أودع رائد رصيد أن مصاريف تنقله إلى الجامعة تفرض عليه سحب مبلغ 1500DA في نهاية كل سنة (بعد حساب الفوائد) نرمز بيل الدولة ومن السنة $N_n=N_0+N_0+1$

 u_n إلى رصيد رائد في 1 جانفي من السنة u_n عين u_0 ثم احسب u_1 .

كم كان رصيد رائد في أول جانفي 2003 ؟

 $u_{n+1} = 1,05 \; u_n - 1500 : n \in \mathbb{N}$ گن من أجل كل (2) بيّن أنّه من أجل كل (3) أدر س اتجاه تغير المتتالية (u_n) .

 $v_n = u_n$ -30000 ، من أجل كلّ عدد طبيعي من أجل كلّ عدد طبيعي (v_n) متتالية هندسية يطلب تعيين أساسها و حدها الأول. *ما هي نهاية المتتالية (u_n) ؟

$$\begin{cases} U_0 = 2 \\ U_{n+1} = \frac{1}{2}U_n + 2n \end{cases}$$
 בינية معرفة بـ: (U_n)

 U_3 , U_2 , U_1 (1)

 $\alpha\in\mathbb{R}$ حيث $V_n=U_n$ - $4n+\alpha$: معرفة باللية معرفة بالمتنالية هندسية معرن العدد الحقيقي α حتى تكون (V_n) متنالية هندسية يطلب تعين اساسها وحدها الأول

n بدلالة n ثم استنتج عبارة U_n بدلالة n ثم استنتج عبارة V_n بدلالة $S_n = U_0 + U_1 + U_2 + U_n + U_n$

c = 2x + 3 $b = x\sqrt{7}$ a = 2x + 1

c و b ، a عين قيمة العدد الحقيقي x بحيث تشكل الاعداد a و b بهذا الترتيب حدود متعاقبة من متتاية هندسية متزايدة

: بعتبر المتتالية العددية (u_n) المعرفة على u_n ب نعتبر المتتالية العددية $u_n=0$ ، $u_n=0$

 $v_n = u_n + 2$:-- N المتتالية العددية (v_n) المعرفة على N المعرفة $3v_{n+1} - 2v_n = 0$: n عدد طبيعي أ) بين أنه من أجل كل عدد طبيعي $v_n = 0$: $v_n = 0$) استنتج أن (v_n) متتالية هندسية بطلب تعيين أساسها

ب)استنتج أن (v_n) متتالية هندسية يطلب تعيين أساسها وحدها الأول v_0 .

. n بدلالة u_n بدلالة v_n بدلالة (ج