

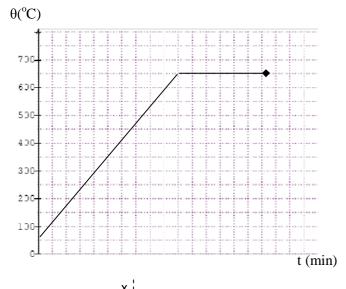
اختبار الثلاثي الأخير العدة ساعتان

السنوات الثانية ع تج

<u>التورين الأول :</u>

غاز ثنائي أكسيد الكبريت (SO_2) غاز ملوث للجو ، ينتج اساسا عن احتراق وقود السيارات . لدينا محلولا مائيا (S_0) لغاز (SO_2) عديم اللون ومجهول التركيز . لمعرفة التركيز المولي لهذا المحلول ناخذ حجما V=50 من V=50 من V=50 من البوتاسيوم . V=50 من V=50 من اللون البنفسجي تركيزه المولي $V=10^{-4}$ $V=10^{-4}$ ندي اللون البنفسجي تركيزه المولي $V=10^{-4}$ $V=10^{-4}$ في اللون البنفسجي تركيزه المولي $V=10^{-4}$ $V=10^{-4}$ المقابل . (الشكل $V=10^{-4}$

- 1- سم البيانات المرقمة على الشكل-1-
- : اذا علمت أن الثنائيتان (Ox/Red) الداخلتان في التفاعل هما -2 $(MnO_4^{-}_{(aq)}\ /\ Mn^{2+}_{(aq)})$, $(SO_4^{-2-}_{(aq)}\ /\ SO_{2}_{(aq)})$
 - . عين المؤكسد (Ox) و المرجع (Red) في هذا التفاعل
 - أكتب المعادلتين النصفيتين الخاصتين بها .
 - أكتب معادلة تفاعل الأكسدة الإرجاعية الحادث .
 - 3- أنجز جدولا لتقدم التفاعل للتكافؤ .
 - كيف تكشف تجريبيا على حدوث التكافؤ ؟
- V_E اذا كان حجم محلول برمنغنات البوتاسيوم $({
 m K^+}_{
 m (aq)} + {
 m MnO_4}_{
 m (aq)})$ المضاف للحصول على التكافؤ هو -4
 - استنتج التركيز المولى (C) للمحلول المعاير


<u> التورين الثانى :</u>

في الصناعة يعاد استرجاع الأجزاء المعدنية و ذلك بإنصهارها ثم اعادة تشكيلها وفق قطع مختلفة .

المنحنى المقابل يمثل منحنى تغير درجة الحرارة (θ) لقطعة من الألومنيوم كتلتها m=1kg بتغير الزمن (t) خلال عملية التحويل . من البيان استنتج مايلي :

- ويل . من البيان استنتج مايلي : • ماهى التحولات الحرارية الحادثة لقطعة الألومنيوم ؟
 - ماهي درجة حرارة انصهار الألومنيوم ؟
- أحسب الطاقة الكلية المستهلكة بتحويل حراري لإنصهار قطعة الألومنيوم .
- اذا علمت أن استطاعة الفرن المستعمل في هذه العملية هي اذا $P\!=\!400~W$
- أحسب المدة الزمنية المستغرقة لإنصهار هذه القطعة .

 $c=904\ j/kg.^{\circ}C$:السعة الحرارية الكتلية للألومنيوم: $L_f=404\ j/g$ السعة الكتلية لانصهار الألومنيوم:

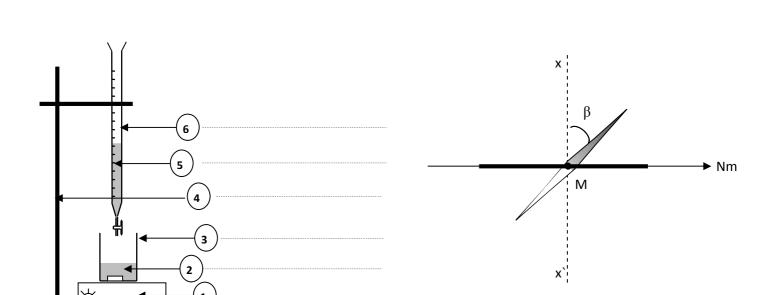
التورين الثالث :

في نقطة M من الحقل المغناطيسي الأرضي حيث شدة المركبة الفقية له $B_h=20~\mu$ نضع البرة ممغنطة .وعلى نفس مستوي الزوال المغناطيسي الذي يشمل النقطة M نضع سلكا ناقلا مستقيما أفقيا فوق الأبرة بمسافة R. يجتاز الناقل تيار كهربائي مستمر شدته I . Transport I . Transport

 $B_1=m_0 \frac{NI}{2pR}$ \sim $B_1=m_0 \frac{NI}{2R}$ \sim $B_1=m_0 \frac{I}{2pR}$ \sim $B_1=m_0 \frac{I}{2R}$: التيار

ماهي العبارة الصحيحة من بين هذه العبارات ؟

عند مرور تيار I في الناقل تنحرف الأبرة عكس عقارب الساعة وتصنع مع المحور (x^x) العمودي على خط الزوال المغناطيسي زاوية (β)


- $oldsymbol{B}_1$. $oldsymbol{B}_2$. $oldsymbol{B}_3$. $oldsymbol{B}_4$. $oldsymbol{B}_3$
- عين على الشكل جهة سريان التيار الكهربائي في الناقل
 - . eta و الزاوية B_1 ، B_h و الزاوية ullet

لمعرفة شدة التيار I نغير البعد R بين الأبرة والناقل و نقيس الزاوية β في كل مرة ونحسب $\tan(\beta)$ ثم نرسم المنحنى البياني لتغير $\tan(\beta) = f(R)$ أي $\tan(\beta)$ فنتحصل على البيان المقابل .

- أكتب معادلة هذا البيان .
- ما هي العلاقة النظرية بين (β) tan و شدة التيار B البعد B وشدة المركبة الأفقية B
- بالمطابقة بين العبارتين البيانية والنظرية ، أحسب شدة التيار I .

بالتوفيق: أسآذ المادة ناجي

 $m_0 = 4p10^{-7}T.m/A$ تعطى نفاذية الفراغ

