


- 1) ماهي مجموعة التعريف D للدالة f?
- f(x) عين حلول المعادلة f(x)=0. ثم استنتج إشارة (2
- D عين القيمة العظمى [-5] على المجال [-5]
- $f(-\sqrt{3}) \circ f(-\sqrt{2}) \cdot f(0) \circ f(-1) \circ f(-4) \circ f(-3)$  قارن بين:(3)
  - g و g دالتن معرفتان بتمثيليهما البيانيين كما يلى



- f(x) < g(x) . أحل بيانيا المتراجحة f(x) < g(x)
- $(m\in\mathbb{R})$  f(x)=mناقش حسب قيم عدد حلول المعادلة mعدد عدد علول المعادلة
  - و دالة تآلفية. g(x) عين عبارة g(x) بدلالة x
  - $f(x) = (5-2x)^2$  :ب $(2.5 + \infty)$  عرفة على والله معرفة على والله معرفة على الله على
    - ریطلب u و u و vتعيينهما وتحديد مجال تعريف كل منهما.
- f عنیر ات کل من u و v،ثم استنتج إتجاه تغیر v
  - $(C_f)$  دالة معرفة ببيانها  $(C_f)$
  - 1)أو جد جدول تغير ات الدالة .f
- $(C_f)$ عين الشعاع  $\vec{v}$  الذي يحول منحنى الدالة "مربع"إلى (2)

(0, i, j) في المعلم f(x) عبارة  $x=2:(\Delta)$  بين أن المستقيم (4 محورتناظر له  $(C_f)$ . 5)مثل منحنيات كل من الدالة و 5 h(x)=f(|x|) ، g(x)=|f(x)|



- $f(x) = \sqrt{\frac{x-2}{x-1}}$  الدالة المعرفة على Rب:  $\frac{x-2}{x-1}$
- D=]- $\infty$ ;1[ $\cup$ [2;+ $\infty$ [:هين أن مجموعة تعريف f2)بين ان f=goh حيث g هي الدالة الجذر التربيعي و h دالة يطلب تعيينها.

 $h(x) = 1 - \frac{1}{x-1}$  انحقق انه من أجل كل x من (3

 $[-\infty;1]$ و]1: $\infty+2$ و المجالين: -4عين اتجاه تغير الدالة fعلى كل من $-\infty$ +:2] و $-\infty$ -[.

- 5) على أي مجال يمكن تعريف الدالة hog! احسبhog
  - $\mathbb{R}-\left\{-1
    ight\}$ لتكن الدالة f المعرفة على المجال 06

حيث: 
$$f(x) = \frac{3x-2}{x+1}$$
 واليكن  $f(x)$ منحناها البياني

1)جد عددین حقیقیینa و طبحیث من أجل كل

. 
$$f(x) = a + \frac{b}{x+1}$$
: يكون  $\mathbb{R} - \{-1\}$ من

- ي استنتج اتجاه تغيرات الدالة f على المجال] $\infty+$ ، 1-[. 3)بر هن أنه من من أجل كل عدد حقيقى x من
  - $f(x) \prec 3$ : [یکون  $+\infty$ ] المجال
- $(C_f)$  بين أن النقطة  $\omega(-1,3)$  هي مركز تناظر لـ  $(C_f)$ .

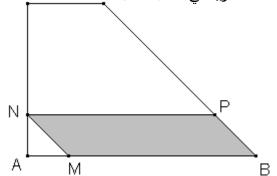
- $f(x) = x^2 + 2x : \mathbb{R}^+$  ب. (1) دالة معرفة على المجال  $+\infty$ ادرس اتجاه تغيرات الدالة f على المجال  $+\infty$  $f(x) \ge 0$  فإن  $x \ge 0$  غدد حقيقي عدد خيف \*
  - f منحنى  $f(x)=(x+1)^2-1$  ثم ارسم  $f(x)=(x+1)^2$ 
    - g دالة معرفة على المجال] $\infty+$ ، 0]

 $g(x) = -1 + \sqrt{1 + x}$ 

- \*ادرس اتجاه تغيرات الدالة g على المجال] $\infty+$ ، 0
- $g(x) \ge 0$  فإن  $x \ge 0$  عدد حقيقى  $x \ge 0$  فإن غيث أنب أنبه أجل كل عدد حقيقى
- $X \to \sqrt{X}$  انطلاقا من منحنی الداله  $(C_{\sigma})$  انطلاقا من منحنی الداله  $(C_{\sigma})$ 3) عين مجال يمكن تعريف الدالة gof? احسب gof.
  - 4) عين مجال يمكن تعريف الدالة fog? احسب fog
  - ABCD **08** مربع ضلعه 2 و P ، N ، M نقط من
  - القطع [AB]، [DC]، [AB] على الترتيب حيث: .PMN مساحة المثلث f(x)مساحة المثلث AM=CN=DP=x

 $f(x)=(x-1)^2+1:$ عین Dمجموعة تعریف f، ثم بین أن 2)أدرس تغيرات fعلى المجال[2;0]ارسم جدول تغيراتها

2)عين موضع النقطة M التي تكون من أجلها مساحة المثلث PMNاصغر مايمكن.


 $y=x^2$ ارسم ( $C_f$ ) منحنى f إنطلاقا من القطع المكاقئ  $(C_f)$ 

(AB ليكن ABCD شبه منحرف قائم في A قاعدتاه [AB]

AD = 4 و DC = 2 ، AB = 6 : و DC = 2 ، DC = 3

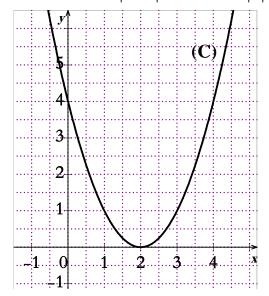
M نقطة متحركة على قطعة المستقيم [AB] ، المستقيم الذي يشمل النقطة M ويوازي المستقيم (BC) يقطع قطعة المستقيم الذي يشمل النقطة

N ويوازي المستقيم (AB) يقطع قطعة المستقيم [BC] في النقطة P ، نضع P . نعتبر الدالة P التي ترفق بكل عدد P مساحة الرباعي P .



1) عين القيم الممكنة للعدد x.

$$f(x) = -x^2 + 6x$$
 : بين أن


- 3) عين موضعي النقطة M حتى تكون مساحة الرباعي MNPB تساوي نصف مساحة شبه المنحرف ABCD.
  - : على الشكل التالي f(x) على الشكل التالي (4

$$f(x) = -(x-3)^2 + 9$$

- 5) أدرس تغيرات الدالة f ثم شكل جدول تغيراتها.
  - $\mathbf{x} \mapsto -\mathbf{x}^2$  باستعمال التمثيل البياني للدالة  $\mathbf{f}$  .
- لتكن f و g دالتين معر فتين على  $\mathbb{R}$  حيث f معر فها ببيانها  $(C_f)$  كما هو موضع في الشكل (أخر التمرين) و g معر فة بالدستور  $g(x) = -x^2 + 8x 12$  وبيانها  $(C_g)$
- $(C_f)$ عين الشعاع  $\vec{v}$  الذي يحول منحنى الدالة "مربع"إلى  $\vec{t}$  ثم عين عبارة  $\vec{t}$  في المعلم  $\vec{t}$  في المعلم ومنارة ( $\vec{t}$  أنه عين عبارة المعلم ومنارة المعلم المعلم

- $(C_{\mathrm{g}})$  بين ان  $g(x)=-(x-4)^2+4$  ثم انشى (2
- g) استعمل التمثيل البياني للدالتين f و g لرسم جدول تغير ات كل منهما.
- $(C_{g})$  محور تناظر ل x=4 محور المعادلة 4)بين ان المستقيم ذو المعادلة
  - f(x) g(x) حدد بیانیا اشارة الفرق (5
  - 6) مثل بيانيا منحنيات كل من الدوال التالية

$$L(x) = |f(x)| \cdot h(x) = f(|x|)$$



- 1) احسب بدلالة x كل من MP ، MN و PC
  - 2) بين أن مساحة شبه المنحرف MNCP هي:

$$f(x) = \frac{-3\sqrt{3}}{8} \left[ (x - \frac{4}{3})^2 - \frac{64}{9} \right]$$

- $\frac{5\sqrt{3}}{2}$  تساوي MNCP عين قيمة  $\mathbf{x}$  حتى تكون مساحة
  - 3) عين مجموعة تعريف الدالة f
  - عين اتجاه تغيرات الدالة f على المجال [4;0] .
- استنتج قيمة x التي تقبل من أجلها الدالة f قيمة حدية عظمي. ارسم التمثيل البياني للدالة f
  - $f(x)=x^2-4$ : دالة معرفة على  $\mathbb{R}$  حيث  $f(1 \ 12$
- و (C) تمثيلها البياني في معلم متعامد ومتجانس كما يلي

(C)

 $(\Delta)$ 

- أ) احسب صوركلا من
  - f بالدالة و ، 1، -2
- ب)عين بالحساب السوابق الممكنة للعدد 1 بالدالة f
  - ج) عين بيانيا سوابق
  - العدد 5 بالدالة f.
- (2) اجب بصحيح او خطا f(x)=0 المعادلة
  - $\mathbb{R}$ تقبل حلین علی  $\mathbb{R}$
- $f(x) \ge 0$  فإن  $x \in [-2,2]$ 
  - $[1-,+\infty]$  الدالة f متز ايدة على المجال
    - $\mathbb{R}$  د) الدالة f زوجية على
- y = ax + b معادلته ( $\Delta$ ) اليكن المستقيم (3
  - أ) بإستعمال البيان عين العددين a و b.
    - $f(x) \le y$  بيانيا المتراجحة
- $k(x) = x^2 + 4x + 3$  دالة عددية معرفة على  $\mathbb{R}$  حيث k(4)
  - $k(x) = (x+2)^2 1$  أ)تحقق أن
- ب) بين أن k مركب دالتين يطلب تعيينهما، ثم استنتج اتجاه k
  - $\left]-\infty,-2\right]$  تغير الدالة k على المجال
- $\mathbf{k}$  ج)تحقق ان  $\mathbf{k}(\mathbf{x}) = \mathbf{f}(\mathbf{x} + 2) + 3$ ، ثم انشئ بیان الدالة