* الجمهورية الجزائرية الديمقراطية الشعبية *

ثانوية أحمد امبارك العامرة ع الدفلى دورة ماي 2013

وزارة التربية الوطنية راره، دربیر اِمتحان البکالوریا التجریبی الشعبة گریاضیات و تقنی ریاضی

المدة 04 ساعات ونصف

إختبار في مادّة العُلوم الفيزيائية

على التلميذ أن يختار أحد الموضوعين التاليين

<u>الموضوع الثاني: (20 نقطة)</u>

<u>التمرين الأوّل : (03 نقط)</u>

. $0,2 ext{mol}\,/\, ext{L}$ بتركيز مولي مائي (S_1) لبيكرومات البوتاسيوم (S_2) بتركيز مولي (S_1) بنركيز مولي (S_1) أحسب كمية مادة المذاب اللازمة لتحضير هذا المحلول.

ب) نأخذ 1,725 من الإيثانول $\mathbf{C_2H_6O}$ ذي الكثافة $\mathbf{0,8}$ بالنسبة للماء , أحسب كمية مادة الإيثانول .

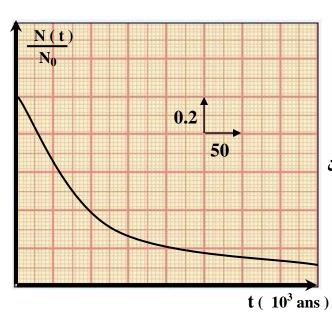
. في اللحظة t=0 غزج الكحول مع المحلول (S_1) المحمض بحمض الكبريت المركز.

 $\left({
m Cr_2O_7}^{2-}\,/\,{
m Cr}^{3+}
ight)$ ، $\left({
m C_2H_4O_2}\,/\,{
m C_2H_6O}
ight)$: أكتب المعادلتين النصفيتين الموافقتين للثنائيتين المثنائيتين الموافقة أ

ب) استنتج معادلة التحول الكيميائي الحادث.

ج) عين المتفاعل المحد إذا علمت أنّ التفاعل تام .

c- سمحت طريقة فيزيائية معينة بتحديد كمية مادة شوارد c- المتشكّلة مع مرور الزمن كما يبيّنه الجدول c- المحت طريقة فيزيائية معينة بتحديد كمية مادة شوارد


60	50	40	30	20	10	5	t(s)
32	30	28	26	22	15	7.5	$n(Cr^{3+})(mmol)$

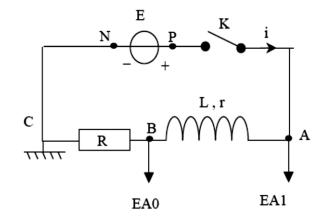
- . بدلالة الزمن $n(Cr^{3+})$ مثّل على ورقة ميليمترية البيان الممثل المثل بدلالة الزمن
 - ب) أنجز جدول تقدم التفاعل.
 - ج) استنتج من البيان زمن نصف التفاعل.
- $({
 m Cr}^{3+})$ حدّد العلاقة التي تربط سرعة التفاعل و سرعة تشكل الشاردة $({
 m Cr}^{3+})$.
 - ب) عين سرعة التفاعل عند اللحظتين t = 0 و
 - ج) فسر تطور سرعة التفاعل خلال الزمن.

 $M(C_2H_6O) = 46g/mol$ $\rho_{eau} = 1 Kg/L$

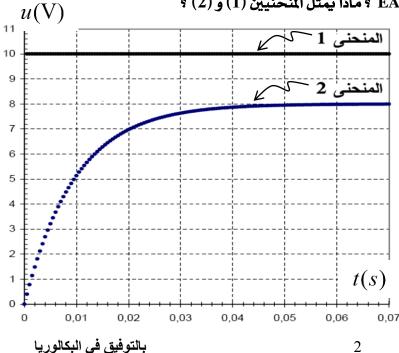
التمرين الثّاني : (03 نقط)

يبيّن المنحنى المرفق تطوّر التناقص الاشعاعي للتوريوم Th^{-230} بدلالة الزمن حيث يمثّل N_0 عدد الأنوية الابتدائية . t عدد الأنوية غير المتفكّدة عند اللحظة N(t)

- $^{A'}_{88}Ra$ إلى نواة الراديوم $^{230}_{Z}Th$ التوريوم يواة الراديوم $^{230}_{R}$ إلى نواة الراديوم $^{230}_{R}$
 - α الإشعاع α
- ب.. أكتب المعادلة النووية المنمذجة للتحوّل السابق مع تعيين قيمة كل من A' و Z .
- - 3.. أحسب ثابت النشاط الإشعاعي لعنصر التوريوم 230.
 - $2,4 \times 10^{18}$ يبلغ عدد انوية التوريوم في عيّنة حديثة $2,4 \times 10^{18}$ نواة
 - ا) أحسب نشاط هذه العينة .
 - ب) كم يصبح نشاط هذه العينة بعد 300 ألف سنة ؟,
- ج) احسب الطاقة التي يُحررّها هذا التفكّك خلال كل هذه المدّة.


 $1uma = 931,5 \, MeV/C^2$, $m(\alpha) = 4,0015 uma$, $m(^{226}Ra) = 225,9779 uma$, $m(^{230}Th) = 229,9845 uma$

التمرين الثالث : (03 نقط)


تحتوى دارة كهربائية متسلسلة على:

- E مولد مثالي للتوترات المستمرة قوته المحركة الكهربائية lacksquare
 - $oldsymbol{\cdot}$ وشیعهٔ ذاتیتها L و مقاومتها $oldsymbol{r}$
 - . $R=80\Omega$ ناقل اومی مقاومته

ي اللحظة t=0 نغلق القاطعة K و نوصل جهاز الكمبيوتر الى الدارة بواسطة واجهة مخصصة للكشف عن التوترات المسجلة عند المدخلين EA1 ، EA0

- (2) و (3) و التوترات المسجلة عند المدخلين (4) ا (4) و (5) و (5) و (6) و (7) و (7) و (8) و (8)
 - 2 كيف تؤثر الوشيعة على الدارة عند غلق
 القاطعة ؟
 - النظام الدائم الشدة I_0 للتيار المار I_0
 - ية الدارة و كذا التوتر u_{AB} بين طرية الوشيعة .
 - . اكتب عبارة التوتر u_{AB} في النظام الإنتقالي . 4
 - $^{\prime}$ استنتج قيمة المقاومة $^{\prime}$.
 - ا وجد بیانیا قیمهٔ ثابت الزمن au ثم استنتج L قیمهٔ L

التمرين الرابع : (04 نقط)

هيباركوس Hipparcos عبارة عن قمر صناعي للقياس الفلكي أطلق في أوت 1989 ، لكن لم يصل أبدا إلى مداره المتوقّع بسبب عطل في أحد المحركات ، فبقي يتحرّك في مدار اهليجي بين الارتفاعين 507 km و 35888km .

1) أحسب البعد المتوسط d لهذا القمر عن مركز الأرض.

2) بفرض ان المدار دائري و نصف قطره d ، و أن القمر لا يخضع سوى لقوّة الجذب المركزي من طرف الأرض و المعتبرة ثابتة : أ -مثّل : الأرض ، القمر هيباركوس ، المدار ، و قوّة الجذب على رسم مناسب ,

ب - بين أن حركة هذا القمر منتظمة في هذه الحالة,

ج - اوجد عبارة السرعة المدارية للقمر بدلالة :

, نصف القطر ${\bf d}$, ثم أحسب قيمتها ، ثابت الجذب العام ${\bf G}$ ، كتلة الأرض ${\bf M}$

د - احسب دور حركة هيباركوس حول مركز الأرض ، هل هو جيومستقر ؟ علّل جوابك إ

3) نعود إلى المدار الحقيقي للقمر (الاهليليجي) :

أ -هل يمكن اعتبار الحركة منتظمة في هذه الحالة ؟ لماذا ؟

ب - احسب سرعة الحركة عند أقرب و عند أبعد نقطة عن مركز الأرض,

 $R_{terre} = 6400 km$, $M = 5.98 \times 10^{24} kg$, $G = 6.67 \times 10^{-11} ui$. يعطى :

التمرين الخامس (03 نقاط)

يبين الشكل مخطّطا مختصرا لمستويات الطاقة في ذرّة الهيدروجين .

1. وضّح الحالة التي تكون عليها ذرّة الهيدروجين :

$$(n)$$
1): ب) من أجل $(n=1)$: ب) من أجل

$$(n=\infty)$$
: أجل

2. تتأثر ذرّة هيدروجين و هي في الحالة (n=2) بضوء ثنائي

، $\lambda_{vert} = 520 nm$ و $\lambda_{rouge} = 657 nm$ الموجة طولا موجتيه

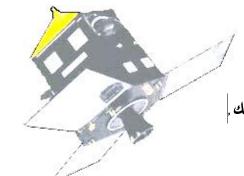
فتمتص موجة واحدة.

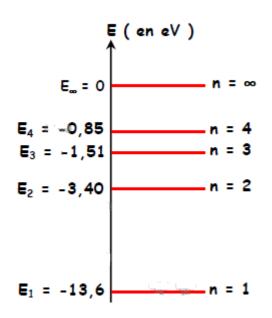
أ) بين أيّ موجة ثمتص ، و عين رتبة مستوى الطاقة الذي ينتقل إليه

الالكترون بعد هذا التأثير .

ب) ماذا يمكن القول عن الطاقة التي تتعامل معها الذرات؟

ج) ما هي طبيعة الضوء التي تبيّنها التجربة : تموجيّة أم جسيمية ؟


(n=3) الحالة حيث يكون مستوى الطاقة الحيث يكون مستوى الطاقة الحيث يكون مستوى الطاقة ((n=3)

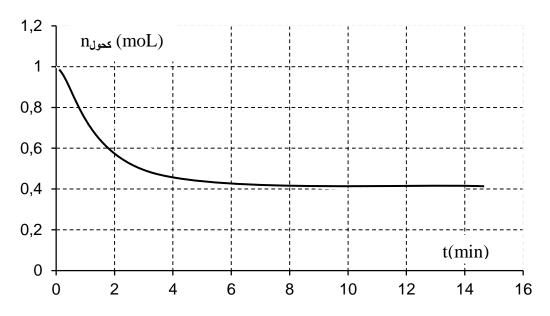

أ) هل يوافق هذا الانتقال اصدار أم امتصاص لفوتون ؟

ب) أحسب تواتر و طول موجة هذا الفوتون .

ج) هل ينتمي هذا الاشعاع للأشعاعات المرئية . علّل .

 $C=3 imes 10^8\,m/s$ ، $1nm=10^{-9}m$ ، $h=6,62 imes 10^{-34}\,j$.s . ثابت بلانك $\lambda\in \left[400-800\right]nm$ ، مجال الضوء الأبيض $1eV=1,6.10^{-19}\,J$

التمرين التجريبي (04 نقط)


. ياذابة كمية من الحمض البروبانويك $\left(C_2H_5-COOH
ight)$ بإذابة كمية من الحمض في الماء .

- الحمض البرويانويك في الماهو الأساس الرافق لهذا الحمض -1
 - $oldsymbol{2}$. $oldsymbol{3,1}$ المحلول الحمضي السابق في الدرجة $oldsymbol{(}25^{\circ}Cig)$ القيمة $oldsymbol{-2}$

$$pKa(C_2H_5COOH/C_2H_5COO^-)=4,9$$
 يعطى:

$$\cdot \frac{\left[C_2H_5-COO^{-}\right]}{\left[C_2H_5-COOH\right]}$$
 أحسب النسبة

- ب) أحسب تراكيز مختلف الأفراد الكيميائية المتواجدة في المحلول.
- نفاعل كمية مقدارها 1 من الحمض السابق مع 1 من كحول صيغته 1 هاز التقطير -3 المرتد تحت درجة حرارة -3 و يع وجود قطرات من حمض الكبريت المركّز .
 - أ) ما هي أهمية جهاز التقطير المرتد ؟
 - ب) اعط الصيغ نصف المفصلة المكنة للكحول السابق ، مبيّنا الصنف في كل حالة .
 - ج) أكتب معادلة التفاعل . أذكر خواصه .
 - د) انشيء جدولاً لتقدّم التفاعل .
 - هـ) اعتماداً على البيان عيّن قيمة التقدّم النهائي X_f و استنتج مردود التحول و الصيغة نصف المفصلّة الحقيقية للكحول المستعمل .
 - و) ارسم بصورة كيفية تطوّر كمية مادة الأستر الناتج في الحالتين:
 - $.(25^{\circ}C)$: إجراء التفاعل نفسه عند درجة حرارة المنحنى الجراء التفاعل المناعل : المنحنى
 - . CH_3COCl المنحنى (2) وإجراء التفاعل نفسه باستبدال الحمض المستعمل بكلور الايتانويل المنحنى

