

الأسئاف: ع . زروقي

افلَـبار أن في الرياضيات

ئەضىر بكالوريا 2012

تمسسرين 01:

 $z^3 - 8 = 0$ المعادلة c حل في -1

$$z_C=-1-i\sqrt{3}$$
 و $z_B=2$ ، $z_A=-1+i\sqrt{3}$: و $z_B=0$ ، $z_A=0$

أ- أكتب z_A و z_C على الشكل المثلثي .

C ب B ، A النقط B ، مثل النقط

جــــــــــما هي طبيعة المثلث ABC؟

 $\left|z-z_{A}\right|^{2}+\left|z-z_{C}\right|^{2}=2012$: عين طبيعة و عناصر مجموعة النقط M ذات اللاحقة z التي تحقق

 $z'=e^{2i\frac{\pi}{3}}z$: حيث z' حيث $z'=e^{2i\frac{\pi}{3}}$ دات اللاحقة $z'=e^{2i\frac{\pi}{3}}$ دات اللاحقة $z'=e^{2i\frac{\pi}{3}}$

f مدد هندسیا طبیعهٔ و عناصر التحویل f

. f النقط f و G بالتحويل G بالتحويل و G بالتحويل و G بالتحويل بالتحويل و G

تمسرین 02 :

. $|a| \prec 1$ و $a \in R$: حيث $u_{_{n+1}} - a.u_{_{n}} = 3$ و بالعلاقة $u_{_{0}} = 2$ و $u_{_{0}} = 2$ و التكن المتتالية $(u_{_{n}})$

لتكن المتتاية $\left(v_{_{n}}\right)$ المعرفة على $\left(v_{_{n}}\right)$ بي المعرفة على المتاية $\left(v_{_{n}}\right)$ المعرفة على المتاية $\left(v_{_{n}}\right)$

. a برهن أن المتتالية $\left(v_{_{n}}\right)$ هي متتالية هندسية أساسها

n و a بدلالة a و -2

 $\lim_{n \to \infty} u_n = 5$ عين قيمة a بحيث تكون -3

 $w_n = \ln |u_{n+2}| + \ln |u_{n+1}| :$ فرض أن $a = \frac{2}{5} :$ لتكن المتتالية (w_n) المعرفة على $a = \frac{2}{5} :$ فرض أن $a = \frac{2}{5} :$

- برهن أن (w_n) هي متتالية حسابية يطلب تعيين أساسها و حدها الأول w_0
 - $S_{n=}w_4+w_5++w_6+....$ ا المجموع : ما المجموع : المجموع المج

تمسرين 03 :

 $(O; \dot{i}; \dot{j}; \dot{k})$ الفضاء منسوب إلى معلم متعامد و متجانس

. \vec{v} (1;-1;2) و \vec{u} (1;1;0) و الشعاعان B (0;1;0) ، A (1;1;3) و التكن النقطتان

 \vec{v} و \vec{u} و الشعاعين \vec{u} و النقطة \vec{v} و النقطة \vec{v} و النقطة \vec{v} و النقطة و \vec{v}

- استنتج معادلة ديكارتية للمستوي (P)
- BH المسقط العمودي للنقطة B على المستوي (P) . احسب المسافة B
 - H عين إحداثيات النقطة -3
 - G عين إحداثيات النقطة G عين إحداثيات النقطة G عين إحداثيات النقطة G عين إحداثيات النقطة G

$$(\overrightarrow{MA} + \overrightarrow{MB} - \overrightarrow{MC}).(\overrightarrow{MA}) = \overrightarrow{0}$$
: حيث با لتكن (S) مجموعة النقط من الفضاء بحيث

أثبت ان (S) هي سطح كرة يطلب تعيين مركزها و نصف قطرها . ، وحدد الوضعية النسبية لسطح الكرة (S) و المستوي (P) .

تمـــرين 04:

الجزء الأول:

- g أدرس تغيرات الدالة و1−
- g(3) و استنتج إشارة g(3)

الجزء الثاني:

$$f(x) = x + 2 - \frac{5}{x-2} - \frac{6\ln(x-2)}{x-2}$$
: بي $]2;+\infty[$ بي الدالة f المعرفة على f

- . f استنتج اتجاه تغیر $f'(x)=\frac{g(x)}{(x-2)^2}$: فإن $x\in]2;+\infty[$ استنتج اتجاه تغیر -1
- . Δ اثبت أن المنحنى $C_{_{\mathrm{f}}}$ يقبل مستقيمين مقاربين أحدهما مائل نرمز له Δ يطلب تعيين معادلتيهما .
 - . Δ ادرس وضعية المنحتى $C_{_{\mathrm{f}}}$ بالنسبة للمستقيم Δ . وحدد نقطة تقاطع مع المستقيم 4
 - Δ من المنحنى $C_{_{\mathrm{f}}}$ و التي يكون عندها المماس موازيا لـ -5
 - . $C_{\scriptscriptstyle f}$ ، Δ أنشى -6

$$2-m = \frac{5 + 6\ln(x-2)}{x-2}$$
 : خاقش بیانیا إشارة و عدد حلول المعادلة : -7

الصعوبة مدرس صاره

الأسئاف: و . زروقي

ئەضىر بكالەر يا 2012

<u>ئمرين01: (05 نقط)</u>

 $(O;\vec{i};\vec{j};\vec{k})$ ستجامد و متجانس الفضاء منسوب الى معلم متعامد

 $\vec{u}(1;-3,1)$ و الذي شعاع توجيهه D الذي يشمل النقطة A(3;-4;1)

$$\begin{cases} x=-1-t \ y=2+t \ (t\in R) \end{cases}$$
 و المستقيم D' المعرف بالتمثيل الوسيطي $z=1-t$

- . D' و ليكن المستقيم Δ العمودي على المستقيمين D
- و H و H' نقطتی تقاطع Δ مع کل من D و D' علی الترتیب .
 - . Δ و ليكن P المستوي الذي يشمل المستقيمين P

نقبل أن المستوي P يقطع المستقيم D' في النقطة H' . (كما هو مبين في الشكل التوضيحي)

- $\stackrel{\Delta}{}$ برهن أن الشعاع $\stackrel{\Delta}{w}(1;0,-1)$ هو شعاع توجيه للمستقيم -1
- . P برهن أن الشعاع $\overrightarrow{n}(3;2,3)$ يعامد المستوى P ، ثم برهن أن x+2y+3z-4=0 هي معادلة ديكارتية لـ x+2y+3z-4=0
 - ا برهن أن إحداثيات H' هي H' هي أن إحداثيا له A
 - ب) عين إحداثيات H و أحسب الطول 'HH .
- $MM' \geqslant HH'$: أن $M' \in D'$ أن $M' \in D'$ ،و من أجل كل نقطة $M \in D$ أن أبيات أنه من أجل كل نقطة $M \in D'$
 - $\overrightarrow{MH} + \overrightarrow{HM'}$ برهن أن $\overrightarrow{HH'}$ يعامد الشعاع (أ
 - $\left\| \overline{MM'} \right\|^2 \geqslant \left\| \overline{HH'} \right\|^2$: و استنتج أن $\overline{MM'} = \overline{HH'} + \left(\overline{MH} + \overline{HM'} \right)$: ب) تحقق أن

نمرين02: (04 نقط)

. عدد صحیح
$$z_k = z_1^k - z_2^k$$
 و لیکن العددان المرکبان $z_1 = \frac{1}{4} + i \frac{\sqrt{3}}{4}$ و $z_1 = \frac{1}{4} + i \frac{\sqrt{3}}{4}$ عدد صحیح -1

أ- برر دون حساب z_k تخيلي صرف .

$$z_{2013}$$
 بـــ أكتب كلا من $z_{k}=rac{i}{2^{k-1}}\sinrac{k\,\pi}{3}$: ثم بين أن يوري على الشكل الأسي على الشكل الأسي

 $8z_{\,2}$ و $8z_{\,1}$: المستوي منسوب إلى معلم متعامد و متجانس $\left(O\,; \vec{i}\,; \vec{j}
ight)$ ، A و B نقطتان لاحقتاهما على الترتيب

 $z'=rac{3}{2}z+z_B$: بحيث z' يحول النقطي الذي يحول النقطة M' ذات اللاحقة $z'=rac{3}{2}z+z_B$ ذات اللاحقة M'

C عين لاحقة A التحويل A عين لاحقة C أ- لتكن النقطة

h عين طبيعة و عناصر التحويل

. B الني مركزه C و يحول C ، و ايتنتج طبيعة التحويل C الذي مركزه C و يحول C ، و ايتنتج طبيعة التحويل C ، و ايتنتج الت

ப்வுயு்60:

- $u_{n+1} = 2u_n + \frac{n+2}{n(n+1)}$: $n \in N^*$ و من أجل كل $u_1 = 1$ و المعرفة بحدها الأول $u_1 = 1$
 - . 0 فإن يالتراجع أنه من أجل $n\in N^*$ فإن (u_n) محدودة من الأسفل ب
 - ب) استنتج أن (u_n) متزايدة تماما.
 - $v_n = u_n + \frac{1}{n} : n \in \mathbb{N}^*$ لتكن المتتالية (v_n) المعرفة من أجل كل (2
 - أ) بين أن (v_n) متتالية هندسية يطلب تعيين أساسها وحدها الأول v_1
 - $\lim_{n \longrightarrow +\infty} v_n$ و $\lim_{n \longrightarrow +\infty} u_n$ و $\lim_{n \longrightarrow +\infty} u_n$ عبر عن $\lim_{n \longrightarrow +\infty} v_n$ عبر عن $\lim_{n \longrightarrow +\infty} v_n$ و $\lim_{n \longrightarrow +\infty} v_n$
 - u_n محدودة ?
 - $S_n = u_1 + u_2 + u_3 + \dots u_n$: يكن المجموع (ج
 - $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = 2^{n+1} S_n 2$: بين أن

ئمرين04:

 $f(x) = 1 - \frac{4e^x}{e^{2x} + 1}$: بالدالة f المعرفة على R بالدالة المعرفة على الدالة الدالة

بين أن الدالة f زوجية -1

- . $[0;+\infty[$ علی $f'(x) = \frac{4e^x(e^{2x}-1)}{(e^{2x}+1)^2}$: تحقق أن $f'(x) = \frac{4e^x(e^{2x}-1)}{(e^{2x}+1)^2}$
 - . $[0;+\infty[$ علی f علی ، $\lim_{x \longrightarrow +\infty} f(x)$ علی -3
- . b و a نقطتین a و a نقطتی تقاطع a مع محور الفواصل . عین القیم المضبوطة لکل من a و a .
 - . f(x) استنتج إشارة
 - R و المنحنى C_f على A و المنحنى C_f على -5
 - هی دالة اصلیة له $e^x f(x) = e^x 2\ln(e^{2x} + 1)$ علی $F(x) = e^x 2\ln(e^{2x} + 1)$ علی 6-
 - ور . $g(x) = \left| \frac{4e^x}{e^{2x} + 1} 1 \right|$: الممثل للدالة : C_g الممثل السابق المعلم السابق المنحنى . $G(x) = \left| \frac{4e^x}{e^{2x} + 1} 1 \right|$. بـرر

اعداد: وزروقي